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ABSTRACT

Location Data: Perils, Profits, Promise

Christopher Riederer

Most of the modern online economy is based on websites offering free services and

content in exchange for advertising access and user data. Web companies collect vast

troves of data about their users in order to better target their advertisements. An

important subset of this harvested data is the locations visited by users. Location

data is valuable as it is a “real world” signal compared to online behaviors: a visit

to a store is a stronger signal than a visit to a website, and location data can reveal

user attributes that are interesting to advertisers.

The collection of this data, however, raises many concerns. Location data can

reveal important attributes that users may not wish to disclose: ZIP codes can reveal

income and race, visits to places of worship may allow discrimination, and insurers

may want to know about trips to hospitals. The risks exist at both an individual

level, with location tied to physical safety, and at a collective level, with inference

about group membership a necessary step towards discrimination.

In this thesis, I examine issues of privacy and fairness in the use of location data.

In the first portion, I empirically demonstrate new attacks on the anonymity and

privacy of users, including a theoretical basis for user identification. In the second

portion, I propose and analyze new solutions for dealing with privacy, anonymity, and

fairness in the collection and use of location data. In contrast to previous work which

presents privacy in abstract ways or ignores the power of data aggregators, the work

presented here focuses on concretely informing users and incorporates the economic

incentives driving privacy and fairness concerns.
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Chapter 1

Introduction

1.1 Motivation

The work presented in this thesis tries to help answer part of a big question: How

can businesses, governments, and other organizations collect and use location data

without running into problems like over-surveillance or algorithmic bias? Before we

dive into this question, however, it’s a good idea to step back and think about why

this is a problem in the first place. In this introductory chapter, I will break down

the question into three areas, defining and examining them in turn:

• “...organizations collect and use...” Why are organizations collecting data,

and what are they using the data for?

• “...location data...” What exactly is location data, why is it useful, and what

differentiates it from other types of data?

• “...problems...” What are the problems that result from organizations using

location data?

Data Collection

Why are businesses, governments, and other organizations collecting and using data?

There are many reasons, but perhaps the largest one is simply “money”. Organi-

zations can use data to improve their bottom line in many ways, such as finding

inefficiencies, discovering emerging business areas, or measuring customer satisfac-
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tion. But a very big use for data is ad targeting, with the market size of online

advertising estimated to be over $229 billion [139].

The modern day ad targeting industry is the current manifestation of a business

model created nearly 200 years ago. The business model is simple and effective: give

away a product or entertainment for free and sell the attention or “eyeballs” that go

with it. As Tim Wu describes in his book “The Attention Merchants,” [126] in 1833

a man named Benjamin Day founded a newspaper titled “The New York Sun”. The

Sun sold for a penny (one sixth the cost of its rivals), losing money on each copy

sold but making up for these loses by obtaining higher advertising revenues due to

the wide reach of the cheap paper. Physical newspapers eventually gave way to the

“free” entertainment of television, about which Andrew Lewis once said “If you are

not paying for it, you’re not the customer; you’re the product being sold.” TV in

turn gave way to digital sites; now people use social networks and search engines to

be entertained and educated, paying not with pennies but with their attention and

personal information.

With newspapers, all readers saw the same ads. Of course, the owner of a sports

equipment store might pay more to show their ad in the sports section, and likewise

a fashionable boutique would pay to have a more prominent ad in the style section.

Then, as now, companies paying for advertisements wanted to know that the price

they pay is justified. Today, however, it is possible to target ads and display interest

(through clicks) at an individual level and there is thus a large drive to pair rele-

vant online ads to the most interested users. Gathering more information about an

individual makes it easier to match a purchase interest with a relevant ad in order

to generate a potential sale and also to inform companies of the population that

are interacting the most with their brands. Some of these matches may strike us as

reasonable and useful, such as showing microwave advertisements to an individual

searching for information about microwaves. Others may strike us as less ethical,
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such as services that seek to target customers who are sad or have low self esteem.

The fluidity of websites allows such targeting at a fine-grained level, showing ads to

users based on the sites they’ve been to, their suspected interests or incomes, and

their locations.

Location data

The types of information used in targeting models are many. In this section we

describe what location data is and why it is a potent ingredient in the modern ad

targeting industry. We’ll start with how I define location data, how it is collected,

and why it is interesting.

In a highly general sense, location data is information relating people to places.

Typically, this relation is the fact that a person was at a place at a particular time.

However, location data could be information that isn’t completely time-bounded: for

example, an individual’s home address, workplace, or frequent vacation spot. We will

typically refer to location data as sets of triples of the form:

〈u, l, t〉

Where:

u ∈ U represents a user id from a set of users

l ∈ L represents a location from a set of locations

t represents time, which may not always be present.

A location l can be described geographically or discretely. I name data that

is defined in terms of coordinates (most typically latitude-longitude) as geographic

location data. In contrast, discrete location data represents locations as a series of IDs

or names instead of as points on a plane or sphere. Both of these representations can

be connected with semantic data, such as a type of venue like restaurant, university,

or city.
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Location data is generated in multiple ways. Though researchers in other fields

may keep track of the locations of animals, robots, or fleets, this thesis focuses squarely

on the movement of users, typically consumers. There are two major classes of data

capture: active, which requires the user to take some action in order for location

to be recorded, and passive, where a location is recorded periodically without any

action from the user. One example of active location capture are “checkins” on

location based social networks, where a user pushes a button on an app to tell the

world where they are. We will often use the term checkin to denote a single location

data point. Another commonly studied form of actively collected location data comes

from cell phones via the Call Detail Record or CDR. When cell phone users make

a call, the nearest cell tower which services this call is recorded, giving the users

location as somewhere within the range of that tower. Note that even though the

user did not explicitly try to generate data about their location, it was still captured,

and since they took some action to generate the point the data is still labeled active.

An example of passively recorded location data would be the constant collecting of

Apple and Google’s location history or the route taken in the app MapMyRun.

Why is location data useful? Location data reveals lots of information about

the preferences and demographics of an individual, key components of a targeted

advertising strategy. Knowing where people have shopped in the past, the average

home price of the area in which they live, the language typically spoken in their

neighborhood, and the method of transportation they use are all pieces of information

that can be garnered from location data and used to boost ad revenues. In addition

to learning from the previous behaviors of an individual, knowing in real time where

someone is can be used by advertisers to push in the moment behavioral suggestions.

We show multiple examples of these in this thesis. For instance, in Chapter 3 we

show how demographics can be inferred from location data and in Chapter 5 and

Chapter 6 we show how location data can be used to boost advertising revenues.
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Moving from the ways in which location data can be used into specific methods,

we return to the question of location representation. Some typical implementations

of machine learning applications handle discretized location better than continuous

coordinates, so we will often gather geographic points together into discrete regions,

through methods like clustering or truncating coordinate digits. We will refer to the

resultant size of the geographic area capturing a set of points as the granularity of

the data. Likewise, we can use different time granularities, such as a minute, hour,

or day. How we gather spatiotemporal points together can have a large impact on

whatever task we are trying to accomplish. Using very large granularities, where

larger regions are gathered into one location, can be more privacy sensitive as they

obscures the details or semantic meaning of visits, but by the same token the large

granularities might be less effective. Smaller granularities in turn can give more

information, narrowing in on cities, to neighborhoods, to a bar on a TV trivia night.

The first item in this sequence is clearly very broad whereas the last provides very

detailed information on visitor interest. My work experiments with different levels of

granularity, showing its impact on, for instance, data uniqueness/anonymity, privacy,

and advertising revenue.

There is much more that can be said about the capture, storage, processing, and

use of location data. A good technical overview can be found in “Trajectory Data

Mining: An Overview” [136].

Problems

Though location data can be very valuable, the flip side to that coin is location

data’s sensitivity. Location data is sensitive because of its ties to physical safety, the

difficulty in anonymizing or obfuscating it, and the signal it provides for sensitive

attributes.

First and foremost, location data is tied to physical presence and thus is paired

5



with physical safety. Indeed, many of the largest privacy scandals involving the

recording or access of location data and have cited concerns around physical safety,

such as Google Buzz, 1 2 Apple, 3 and Uber 4. The knowledge of someone’s location

or important places in his or her life like work or home is an important aspect of

physical safety.

Beyond physical safety, the collection and use of location data is a concern due to

the fact that it is extremely unique and thus is difficult to anonymize or obfuscate.

As we discuss in Chapter 2, several years of research by the academic community has

shown that most users have location traces that are unique to them and therefore

knowledge of just a few of their previous visits can be enough to pull them out of a

dataset. Previous research in this area centered around empirical observations about

the uniqueness of location data. This research proved the feasibility of attacks where

an adversary had access to auxiliary information, or a subset of the “anonymous”

data set linked to private user information. Although an issue, these works ignore

attacks where a subset of the anonymous data is not available and do not supply a

rigorous basis for such attacks. As we show in Chapter 2, data generated from two

entirely different domains can be used to link users across data sets through the use

of a simple heuristic algorithm.

Removing identifying information connected to location data thus does not safely

protect identity. Additionally, humans are very cyclical in their visiting patterns,

meaning removing portions of time will also not be very helpful, and our social nature

means the movements of others may give away our own. Obfuscation techniques

such as reducing granularity, removing certain fields or rows, or using differential

1https://www.theregister.co.uk/2010/02/16/google buzz security bug/

2https://techcrunch.com/2010/02/12/google-buzz-privacy/

3https://arstechnica.com/gadgets/2011/04/how-apple-tracks-your-location-
without-your-consent-and-why-it-matters/

4http://www.huffingtonpost.com/entry/uber-settlement-god-
view us 568da2a6e4b0c8beacf5a46a
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privacy can reduce the utility of the data. Though some loss in accuracy of queries

is to be expected, more work needs to be done to rigorously evaluate the costs,

both of implementation and in terms of revenue gained or lost. The work presented

in Chapter 5 users a revenue model to investigate the impact of a privacy-friendly

advertising system.

Beyond simple presence of an individual is what the locations in someone’s life

may say about him or her. A quote (which I often use) from United States Supreme

Court Justice Sonya Sotomayor vividly describes this problem: “disclosed in [GPS]

data ... [are] trips the indisputably private nature of which takes little imagination

to conjure: trips to the psychiatrist, the plastic surgeon, the abortion clinic, the

AIDS treatment center, the strip club, the criminal defense attorney, the by-the-hour

motel, the union meeting, the mosque, synagogue or church, the gay bar and on

and on [118].” At an individual level, control over someone’s location history has

grave privacy implications. The knowledge of a person’s location history can also be

the knowledge of their religion, sexuality, habits, strengths, and weaknesses. Such a

release can subject people to ridicule, threats, or discrimination: real mental, physical,

and economic harms. The prospect of such information being available to others can

create a chilling effect on free speech overall. The research community has taken

strides towards understanding such threats, but more work remains. What data, and

how much data, can be used to infer sensitive attributes? What are attributes for

which it is ethical to infer and which are not, and how do we technically capture

this when user opinions will drastically defer from one another? Can we measure a

“chilling effect” due to data collection or privacy breaches?

These problems do not end just at the level of an individual, but in fact extend

to groups. As mentioned previously, location data can be used in machine learning

system to target advertisements and improve revenues. By the same token, however,

location data correlates with attributes on which we may not wish to target. For
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example, incorporating an attribute such as ZIP code can in effect create a system

that targets based on income or race. Multiple examples of such issues can be found in

the popular press [92] as well as the research community. De-biasing our algorithms

is an area of research with lots of interest but many open questions. What is the

most cost-effective way to de-bias, and will it satisfy either companies or users? For

many of these techniques to work, systems will actually need to know the protected

classes of the individuals they are trying to aid, requiring more data collection, not

less. How can we maintain fairness at an individual as well as at a group level? As

with almost all of these challenges, can we scale our solutions simply and effectively

to the sizes companies now require?

The problems then boil down to this: Economic incentives drive companies to

collect large amounts of location data, which is typically done legally and with the

consent of their users. Users may not be fully aware of what data is collected, how

long it is stored for, or what this data could be used for. Location data is difficult

to anonymize, and if an unencrypted version of it is even partially compromised, it

can mean harm to users. Additionally, the use of location data in decision-making

algorithms can lead to unfairness and discrimination, even if unintentional.

Prior Solutions

With the use of location data being so desirable but also so potentially fraught with

issues, what are we to do?

In a 2008 survey of computational location privacy [60], Krumm presents four

main strategies: anonymity, obfuscation, regulatory policies, and privacy policies.

The privacy landscape and challenges have also evolved from then, and we might also

consider the (often combined) areas of fairness, accountability, and transparency,

which could perhaps be thought of as some form of the final three items. We will

briefly discuss the list and where opportunities and pitfalls lie.
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As we have discussed in the previous section, and as we will demonstrate in

Chapter 2, location data is very difficult to anonymize while keeping some unique

person-level identifier [132, 83, 80]. Another idea under the banner of anonymity

goes further in the direction of user protection: using cryptography to anonymize

all location data at a transactional level as opposed to at the user level. Blumberg

and Eckerlsey [8] outline modern cryptographic techniques which could anonymize

location-based search or even automated toll booths, executing the task while retain-

ing no record of who did the searching or paid the toll. For example, some prior work

has proposed splitting advertising systems into a local ad service and a cloud-based

server, meaning user information can be kept locally and out of the hands of aggre-

gators [45, 40, 115]. Fair billing can be achieved through the use of cryptography.

Challenges to their deployment, however, include users who don’t fully understand

the problem (and so will not advocate for it) and businesses who want to avoid im-

plementation costs and find value in the data beyond the immediate advertisements

(such as in product development).

Many papers have explored obfuscation techniques like differential privacy to make

concrete the costs of disclosing location data. Though a useful area of exploration,

approaches that don’t take into account the strong incentives of the actors in the

ecosystem will not be successful. Obfuscating or deleting information about users

may help companies through avoiding legal costs and bad publicity. However, the

preponderance of location data still being collected shows that to most companies

the incentives for exploiting this data are currently much higher than the costs. Ad-

ditionally, statements about probability in terms of data exposure can be difficult for

users to interpret, making tools and techniques less likely to generate user enthusiasm

or positive press. The work in this thesis tries to deal with these challenges by (1)

putting privacy in terms that users can understand, (2) giving users control over their

information release while maintaining incentives to continue generating data, and (3)
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mitigating specific risks of data collection. Rather than obfuscating or anonymizing

all data, we provide solutions where data can be collected and stored in a “raw” form.

Branching out from anonymity and obfuscation, the academic community has

turned its attention towards to “algorithmic bias” problems by working on solu-

tions for fairness, accountability, and transparency. To be more technical, fairness

refers to systems or algorithms that attempt to remove disparity between groups.

Accountability focuses on methods to audit or insure compliance with some policy.

Transparency tries to take decision processes generated by machine learning and give

human-interpretable descriptions of why those decisions took place. Accountability

and transparency are key components of regulatory or privacy policies, insuring that

companies are actually doing what they propose. Fairness could perhaps be consid-

ered a combination of privacy policy and obfuscation. As companies modify their

algorithms to insure fairness, they are adhering to a policy through technical means

while modifying the way in which user information is used. The later half of my

thesis will focus on these ideas of fairness, accountability, and transparency.

1.2 Contributions

The work presented in this thesis falls under two main themes. The first portion of the

thesis, which includes Chapters 2 and 3, demonstrates empirically new attacks on the

anonymity and privacy of users, including a theoretical basis for user identification

and expanding our understanding of attacks from individual levels to group levels.

In this portion, there are multiple questions we consider. Previous work showed that

human mobility is highly unique and hence vulnerable to de-anonymization. What is

a reasonable underlying model that could give rise to this phenomenon? Could such

a model be used for additional de-anonymization attacks or profile linking? How

can we study the cross domain case, when prior research has only considered finding
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subsets of one dataset? Are there attacks that extend beyond individual identity to

sensitive user attributes? What representations of data will be most accommodating

to such attacks?

In Chapter 2, we begin by empirically demonstrating that a simple heuristic al-

gorithm can be used to link user identities across “anonymous” datasets using spa-

tiotemporal data. In addition to a test of our algorithm on several novel datasets,

the work includes a proof of the effectiveness of our algorithm, based on a model

of Poisson-distributed user visits. Prior to the work presented in this chapter, the

understanding of uniqueness (and hence, risk of identification) in location data was

limited to analysis of single datasets. The only attack vector here was auxiliary in-

formation that was a subset of the targeted dataset. In contrast, our work extends to

the cross domain case, where datasets generated from entirely different behaviors can

be used to re-identify users. Studying the cross-domain case is a difficult task due to

requiring two datasets with ground truth links between them, which we overcome by

finding novel datasets.

In Chapter 3 we shown that demographics like race and gender can be inferred

using only location data. A major challenge in conducting such research is a lack

of labeled data, which we overcome through the use of crowd-sourcing and publicly

available social network data. We show that such data is representative of the geogra-

phies we consider, and explore new metrics of segregation in terms of where people

travel as opposed to where they live. In contrast to the previous chapter which fo-

cused on anonymity, an individual concern, the possibilities raised in this chapter

focus on group concerns.

The second portion of the thesis, Chapters 4, 5, and 6, propose and analyze new

solutions for dealing with privacy, anonymity, and fairness issues. Prior work on

privacy, while extremely useful, has often presented privacy in an abstract manner

that is difficult for average users to understand. For example, differential privacy
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captures a probability guarantee about whether a user will encounter additional harm

from including their data in a database through a parameter ε [26]. k-anonymity and

the related t-closeness and l-diversity give facts about the number of similar appearing

users in a database, essentially creating plausible deniability [114, 66]. Other solutions

propose revealing no user-level information to aggregators. In this section, we work

to create privacy solutions that are comprehensible to typical users and economically

palatable to aggregators. Conducting such research requires us to ask and answer

many questions. How can we inform users with useful and digestable information?

How can we give users access to choice and control over their data, while doing so

in a way that does not overwhelm them with options? What if we protect against

specific harms caused by data aggregation, as opposed to all potential forms of harm?

When should solutions be implemented at a local point-of-collection level (such as on

a smartphone or in a browser) or at a system level (on an aggregator or advertiser’s

server)? When should we focus on protecting an individual in contrast to a protected

group? Can both be done simultaneously?

In Chapter 4 we work to inform users and provide accountability by creating a

personal location privacy auditing tool. In prior chapters, the focus was on concerns

of privacy or anonymity. We now shift to work that helps users solve their privacy

conundrums. In contrast to tools that cut off access to all user data to advertisers,

our goal is to better educate and inform users. The key challenges are (1) to build a

functioning, real time site where users can interact with data from multiple sources,

and (2) to display information about their locations and privacy in a way that is

both informative and additionally easy for users to interpret and understand. The

application we build lets users import and visualize the location data collected by

popular web services in order to understand what these companies know or can easily

infer about them.

In Chapter 5 we design and analyze a system that gives users control over what
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location data is released to aggregators while preserving the data economy. The key

challenge is to devise a way in which users can be properly incentivized to release

their data, which we achieve by pricing the data using an auction for digital goods.

A second insight exploited for this work is using a representation of locations that

are useful to both users and data aggregators. For this, we settle upon “keywords” or

semantic representations associated with a location. Furthermore, we use two large

scale datasets to analyze the economic impact to advertisers, showing that such a

system would not reduce revenues greatly. In our previous work, we provided tools

to inform users about privacy. This work, in contrast, takes a more active role,

implementing a solution at a system level in order to balance user privacy with the

economic incentives to collect data.

In Chapter 6, we conduct a first analysis of the costs to advertisers of implement-

ing “fairness” algorithms in a location-based advertisement setting. Unlike prior

works which focus on classifier performance or specific applications, we quantify a

revenue-fairness trade-off and use a realistic, sparse dataset of location data. The key

challenges to this work are finding an appropriate dataset, implementing a fairness

algorithm, and modeling the advertiser revenue. We apply an existing framework for

fairness on a dataset gathered from social media, empirically analyzing the potential

for inadvertent discrimination among gender and race in location-based systems and

additionally showing the impact of location representation on fairness. In contrast to

the previous chapter, this work doesn’t take aim at the data, but rather at what is

done with the data by aggregators. Instead of preventing data collection, it analyzes

what will happen to revenues when fairness constraints are put into place. Though

the work in this chapter is a grounding for research into fairness in location-based

ads, our methodology applies to more general advertising tasks.
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Chapter 2

The Anonymity of Location Data

When discussing the problems of user data, anonymity is a natural place to start. If

it is impossible to link data to a user, how will it be possible to cause that user harm?

There are, however, two problems with that question. The first, which we explore

in this chapter, is the immense difficulty in anonymizing location data. The second,

which we explore later, is that attributes associated with a user can still be used to

cause that user harm, regardless of the knowledge of their identity.

The first large-scale study of the k-anonymity of location data was appropriately

titled “Anonymization of Location Data Does Not Work” [132]. The paper used data

from cell phone call detail records (or CDR) for 25 million United States users over a

3 month period. The authors represents each user as simply their top n most visited

locations, varying n from 1 to 3. Additionally, the authors varied the granularity of

the locations, with the smallest as cell sector and the largest as state. Remarkably,

using 3 locations at a cell level made half of all users completely unique, and 3

locations a sector level made 85% of all users unique. A figure detailing this result

and results for other granularities and values of n is depicted in Figure 2.1. The

authors went on to analyze the impact of geography (comparing different states and

cities), mobility (distances between top locations), and social networks on anonymity.

A different study used randomly selected points from a user’s dataset and included

time of location visit [84], as opposed to a users top n locations (mostly omitting

precise time) of Zang and Bolot. Using a call detail record dataset of 1.5 million

users from a small European country, this work showed that 95% of users are uniquely
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Figure 2.1: Figure from [132] depicting the size of anonymity sets for top n most
visited location of users. Locations are varied in granularity, from cell sectors to US
states.

identified by 4 spatiotemporal points. A follow up study [81] showed that in a data

set of credit card transactions, user profiles of spatiotemporal points had a similar

level of uniqueness, and even more when transaction amounts were included as well.

In these works, the question of user anonymity was addressed using either differ-

ent portions of the same dataset or observing the same behavior across thematically

similar domains. In contrast, the general cross-domain case where users have differ-

ent profiles independently generated from a common but unknown pattern raises new

challenges, including difficulties in validation, and remains under-explored. Addition-

ally, previous works primarily showed empirically properties about anonymity in user

data. The main contribution of this chapter is a generic and self-tunable algorithm

that leverages any pair of sporadic location-based datasets to determine the most

likely matching between the users it contains. While making very general assump-

tions on the patterns of mobile users, we show that the maximum weight matching

we compute is provably correct. Although true cross-domain datasets are a rarity,
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our experimental evaluation uses two entirely new data collections, including one we

crawled, on an unprecedented scale. The method we design outperforms naive rules

and prior heuristics. As it combines both sparse and dense properties of location-

based data and accounts for probabilistic dynamics of observation, it can be shown

to be robust even when data gets sparse.

The work in this chapter was presented at the World Wide Web conference in

2016 and was conducted with Yunsung Kim, Silvio Lattanzi, Augustin Chaintreau,

and Nitish Korula.

2.1 Motivation and Summary of Results

Almost every interaction with technology creates digital traces, from the cell tower

used to route mobile calls to the vendor recording a credit card transaction; from

the photographs we take, to the “status updates” we post online. The idea that

these traces can all be merged and connected is both fascinating and unsettling.

The ability to merge different datasets across domains can provide individuals with

enormous benefits, as seen by increasingly widespread adoption of apps that learn

multi-domain user behavior and provide helpful recommendations and suggestions.

However, when done by third parties that a user may not interact with directly, this

raises fundamental questions about data privacy. In this chapter, we focus on location

data and show that this type of data is privacy sensitive. More formally, we focus

on the following technical question: Is it possible to link accounts of the same user

across datasets using just location data? The answer to that question points both to

algorithmic feasibility but also our ability to maintain seemingly distinct identities or

personas until one chooses to reveal they belong to the same user.

Increasingly often, as shown in recent studies, the location of a smartphone owner

is captured and recorded for a majority of mobile apps even in the absence of ge-
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ographical personalization. This considerably expands the number of parties who

can collect and exploit the knowledge of a user’s whereabouts. Even when data is

recorded sporadically, these datasets are very rich and intimately connected to one’s

everyday life; they may present or at least partially reflect our most recognizable pat-

terns. Recently, even a small amount of location information was shown sufficient to

either render most users distinguishable [83, 132], or infer multiple sociological traits

such as race [103], friendship [18, 21], gender, or marital status when combined with

domain semantic information [138].

In spite of this work, determining when and how two accounts belong to the same

mobile user in different domains remains an open problem, primarily for three reasons:

First, identity reconciliation is harder than both classifying and distinguishing users.

As an example of the former, one may not be able to connect two profiles exactly, but

can still be quite certain that both belong to a high-income American, for instance.

For the latter, uniqueness of an individual in one dataset does not imply that they will

be easily recognized in another one. For instance, in a simple case where individuals

produce location records randomly and independently in two domains, users will

likely be unique but it is provably impossible to link them across datasets. Second,

as a consequence, many previous methods are domain specific and typically focus on

clean and dense parts of the data. In contrast, most of our motivating examples above

are sparse, and we aim at leveraging locations in the general case without additional

information attached. Third, with almost no exceptions, identity reconciliation was

always considered for different parts of the exact same data set, or at best domains

that are semantically similar. In contrast, our goal is to address the most general

case in which records across domains are separately generated but share an underlying

pattern: The user’s physical location. Since one cannot occupy two locations at the

same time, the common pattern of our physical mobility creates fertile ground to

notice events that coincide, and those that are incompatible. The main question is

17



how to use those observations (ideally in a provably optimal manner), under which

conditions they are sufficient to link accounts, and how to collect data to empirically

validate any related claims.

Exploiting rare coincidences to de-anonymize users is now a classic problem, with

a sparsity based method available for almost a decade [88]. While we defer a more

detailed comparison with our work to the next section, we would like to point out

the main ingredient of our algorithm: a new use of misses and repetitions to in-

terpret coincidental records that exploits the sparse property of coupling between

Poisson processes. We note that sporadic collection of records typically resembles

such statistics for rare events. This method, which is proved optimal and correct

under these simple assumptions, is hence particularly effective in various datasets.

Another advantage of our scheme is that it relies on only three parameters1 that

are initially unknown but easy to approximate. We prove empirically that simple

methods to estimate these parameters are robust even when starting from imperfect

observations.

We now present the following contributions.

• A new generic and self-tunable algorithm which combines positive and nega-

tive signals from co-incident events to build a new type of maximum weight

matching. In practice this algorithm is compatible with a parameter tuning

step exploiting a previously proposed density-based method. In spite of no

domain-specific tuning, our algorithm outperforms the state of the art.

• A rigorous interpretation of our algorithm justifying its correctness. In partic-

ular we provide a simple model of mobility that encompasses various cases of

location-based data. This is, to the best of our knowledge, the first mathemat-

ical model for observed location traces across multiple domains. We prove the

1Two are related, so estimation has two degrees of freedom.
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ideal correct matching maximizes our algorithm’s score and conversely, that

only correct matching achieves maximum score in expectation.

• An empirical evaluation of this problem in three distinct scenarios that signif-

icantly extends beyond previous studies in both realism and scope. The first

dataset, already publicly available, allows immediate comparison with prior

results. For the second scenario considered, we collected data from two cur-

rent live services, gathering considerably more locations, and proving that our

method achieves near perfect accuracy. Finally, our method is shown superior in

a commercial scenario that is significantly more heterogeneous and challenging2.

As we explained above, linking anonymous profiles across domains is considerably

more challenging than either establishing users’ distinguishability or classifying users

into different groups. As such, it may have been considered impractical at scale. The

fact that we can link users, sometimes with high precision and recall, shines new

light on the protection offered by even the most complete anonymity. Our results

are, to the best of our knowledge, the first example of a cross domain analysis of

this problem to prove an algorithm’s correctness, together with the first validation at

scale of location based reconciliation in real cases. As more data are available, and

different patterns or domain specific properties are discovered, we believe that more

algorithms could be designed and evaluated against the technique we present as a

benchmark for the most general case.

2This dataset was not released in raw form to any researcher in the team; the evaluation was run
on a remote server with a non-exclusive agreement that other academic researchers can replicate in
the spirit of reproducing and improving future reconciliation methods. Note that the authors from
Google did not have even remote access to this data.
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2.2 Background

It has been shown that most users in location based datasets are unique, either

through a few of their most visited places [132] or based on a few timed visits chosen

at random [83, 80]. This property follows a tradition of work specifying the risk of

releasing even anonymized datasets [114]. What this shows is that users can be re-

identified in theory, for instance in one of the following two cases: if an adversary has

access to auxiliary information (e.g., the real identity of all users who visited a place

at a given time, or an original set of seed nodes which are already re-identified) [83],

or alternatively if a public data set is known to intersect the anonymized one [114].

What those works do not show, however, is how to exploit this uniqueness in the

common case we consider: two distinct datasets with no auxiliary information that

is known a priori.

Identity reconciliation so far has leveraged three principles: Ad-hoc identifying

features such as matching username, email addresses, or unique tags. Those are

ignored here; as recently measured in [33] they are rarely available and accurate. In-

formation propagation, where starting from a seed set of identified nodes, a graphical

structure such as a social network is exploited to expand the set of matched nodes in

static [53, 56, 87, 94, 129] or mobile [111, 52] datasets. Again, those techniques can-

not be applied in the general case where no preexisting graph and seeds are known3.

Finally, identification of nearest neighbors using similarity metrics [88, 32] generalizes

the first method to leverage non-identifying features and imperfect matches. Data

sparsity plays an important role, which is typically included in the design of the sim-

ilarity metric. This approach suffers from the opposite problem: it applies so broadly

that it is very loosely defined. Indeed, most successful reconciliations using this tech-

3In the most ambitious information propagation where seeds may be noisy and structures, ini-
tially unknown, are inferred, the differences between this approach and one based on similarity
starts to fade. We experimented with it but found no improvement from information propagation
to report.
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nique report on the art of deciding upon informative similarity features – or often

the subtlety of their combined effects [32] – without necessarily providing a unified

justification. Moreover, a closer look showed that the accuracy of similarity methods

for static features (e.g., name, home location, friends) are typically overestimated in

practice [33]. Our work addresses this important need: Our inference method inter-

prets location datasets, however different in their domains, as sporadic observations

of the same hidden mobility processes. We generalize data sparsity from a static

viewpoint to a dynamic viewpoint, leveraging naturally misses and repetitions in the

observed processes. In spite of a considerable amount of prior work on Entity Reso-

lution [20], we did not find similar analysis and algorithms, probably because mobile

datasets are relatively new and exhibit specific dynamics. Similarly, the related liter-

ature on network alignment [5] rarely considers the bipartite case [57] and it centers

on static graphs. We empirically found that our method yields superior accuracy to

those previously proposed, while being more robust and easy to use.

Other attempts at re-identifying users using mobility data only have typically

expressed similarity between users with density based methods [119, 32]. Those rely

on a user having a discriminative pattern in the frequency she visits various places.

In [119] author aims at reconciling users in the same domain but at different periods,

hence ignoring the time of the visits themselves. In situations where datasets over-

lap in time, those techniques leave much information unused.4 Another technique,

somewhat diametrically opposed, uses specific visit times [108]. Prior to this paper,

this was only validated in a single domain (by randomly extracting a subset of each

user’s profile to recognize). We empirically show that none of those methods extend

to the more demanding cross domain case without incurring large inaccuracy. This

confirms previous observations that density and time based similarities can reduce

4It is, for instance, entirely ineffective in a homogeneous population where each user follows the
same location distribution for her visits. Our method, in contrast, is proved to correctly handle that
case.

21



the scope of re-identification attacks by removing a lot of dissimilar accounts [32], but

cannot be used as is for reconciliation as they lead to low accuracy in practice [33].

Finally, we should mention a statistical learning approach based on Dirichlet distri-

bution used to relate anonymous CDR data with publicly available social network

data [13, 14]. It remains, however, difficult to judge its effectiveness as it is used

without further theoretical justification and validated without ground truth in the

data. Our method, in contrast, is tailored from scratch to location based datasets,

its correctness is proved under simple assumption on nodes’ visits, and it has been

evaluated on three data-sets with ground truth, among the largest available to date,

including two that have never appeared in this context. Whether more generic statis-

tical learning reproduces some of the strengths of our method remains an interesting

question to explore beyond the scope of this paper.

2.3 Location-based Reconciliation

Problem Formulation and Model

We use U and V to denote the set of n user accounts in the two domains, with

accounts to be linked using location-based data. Let σI denote the true (“identity”)

mapping that correctly links the two accounts of the each user. The users may visit

locations at various times and perform an action (such as a checkin), which results

in the creation of a record in one of the datasets. Each such record is associated with

the location and time-stamp, and possibly additional semantic information that is

relevant to this dataset, but may not make sense in a different domain. Therefore,

in our algorithm, we only use the time-stamped location data. Note that locations

and times may be recorded at a different granularity and levels of precision in the

two different datasets to be reconciled (for instance, one may only record the nearest

cell tower, the other has GPS coordinates). To account for this, we divide locations
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Figure 2.2: Two space-time trajectories with associated footprints in two domains.

and times into bins, corresponding to a geographical region or interval of time; For a

fixed bin corresponding to location region ` and time interval t, any action recorded

in region ` during time interval t is associated with bin (`, t). We use L to denote the

set of all location regions and T the set of time intervals in the union of our datasets.

As shown in Figure 2.2, although each user u or v physically follows a continuous

time trajectory Mt (shown on the left), her mobility record r(u) in each domain is

defined as the multi-set of (location, time) bins in which she took an action: r(u) =

{(`1, t1), (`2, t2), . . . }. Note that it is important that this is a multiset: if a user

records 2 actions in the same bin, this bin is present twice in the mobility record.

Given a specific (location, time) pair (`, t) we denote the number of actions in domain

1 that user u took by a1(u, `, t) (i.e., the number of occurrences of (`, t) in the multiset

r1(u)). We define a2(u, `, t) similarly for domain 2. For ease of notation, we use a1

(respectively a2) to denote a1(u, `, t) (resp. a2(u, `, t)) when u, `, t are clear from the

context.

In this paper, we focus on reconciling users across two domains based only on their

mobility records, which we refer to as r1(u) and r2(u) respectively. In other words,

given a collection of mobility records { r1(u) | u ∈ U } and { r2(u) | u ∈ V } for the

same population but with no identity attached, our goal is to return the true mapping

σI which maps the record belonging to one user to the record of the same user in the
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other collection.

Mobility Model and Assumptions

In order to formally analyze algorithms applying to the cross-domain reconciliation

problem defined above, it is necessary to work under a given mobility model which

governs how users produce records. Without such assumption, only worst-case per-

formance can be measured, which is arbitrarily bad for any algorithm since one can

devise instances where the set of locations with actions in domain 1 is completely

disjoint from the set of locations with actions in domain 2. Providing the first such

model and proving it leads to a practical method is one of our key contributions.

We assume the mobility records follow a simple generation process: First, for each

(location, time) pair, the number of visits of each user to this location during this

time period follows a Poisson distribution, with rate parameter λ`,t and this choice

is independent of the visits produced for any other pair. It is a rather crude but

effective assumption, as it combines mathematical simplicity (critical later to justify

our method), and a form of robustness. Indeed, Poisson distributions are known to be

good approximations of rare event processes and to combine gracefully when summed,

allowing multiple granularity levels to be combined. They are quite commonly used

to handle robust parameter estimation, which is important as the parameter λ`,t is

unknown to the algorithm.

The characterization above describes how visits are produced, but does not spec-

ify how users perform actions that are observed. We assume that each time the

user visits a location, an action in domain 1 and domain 2 occurs, independently

of each other, with probabilities p1 and p2 respectively. Thus, the mobility records

are random variables, which we denote by R1(u) and R2(u) respectively, with the

number of actions in a given bin (`, t) being random variables denoted by A1(u, `, t)

and A2(u, `, t) respectively. The process of visits and action in each domain is also
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assumed to be independent among users.

Possible extensions: While we keep the model to its simplest form for the sake

of a clear exposition, the arguments we provide in this paper generalize to multiple

other cases. First among them, all results apply as well when the probability p1

and p2 could depend on l and t as well. One could also analyze our algorithms when

those parameters are not constant among users. After experimenting with those more

general models, we found that they do not yield significant practical improvement in

the scenarios we evaluated. We also note that one can adopt different generative

models, but many of these do not change the problem significantly, or the analysis

of our algorithm. For instance, the number of visits to a particular location may be

generated by a binomial distribution, instead of Poisson.

Other extensions are interesting topics for further study: For example, our model

does not currently account for geographical proximity between different locations; in

reality, users who visit a location ` are also likely to visit a nearby location `′. One

advantage is that this keeps our model general and robust to variations in formats and

resolution across datasets that are quite common in space-time data. For instance,

actions 1km apart may be considered close in a rural setting but far in an urban area.

Our method is agnostic to such relative change of distance. We also note that our

model ignores dependencies between users. For instance, members of a family may

travel together and the presence of friends in a location may render a visit by a given

person more likely. On the other hand, our model can accommodate frequency of

visits that vary between users and hence create communities that on average visit

frequently similar places. With larger and richer data, it is likely that more realistic

models than ours may give additional insights and better exploit users’ true mobility

patterns. However, the simple case we define above leads to a simple algorithm that

captures mobility of users sufficiently well to beat the state of the art and present a

reasonable benchmark for future use.
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2.4 Algorithm and Analysis

In this Section, we present an algorithm tailored to the location record model intro-

duced above. Our main contribution is a proof that under these assumptions, there is

a tight correspondence between the maximum weight matching that we define and the

‘true’ matching between users, even exhibiting a positive gap. Later, Section 2.5 will

demonstrate that this correspondence generalizes in practice to make this algorithm

a superior alternative to multiple known approaches.

Algorithm

Our algorithm works in two phases: The first phase is to compute a score for every

candidate pair of users (u, v) ∈ U × V (see below for more details). In a second

phase, we first define a complete bipartite graph on (U, V ) where the weight of the

edge (u, v) is given by the score for (u, v) aforementioned. We then compute the

matching in this bipartite graph that has maximum weight5. The algorithm then

claims that records that are connected by an edge belong to the same user. Under

the assumptions introduced above, we can prove that this procedure is always correct.

In the rest of this section, we provide more details on how the scores of a pair (u, v)

are determined: For each (location, time) bin (`, t), we compute Score(u, v, `, t) =

ln (φ`,t(a1, a2)), where the term φ`,t in the logarithm is:

P [A1(u, `, t) = a1 ∧ A2(v, `, t) = a2 | σI(u) = v]

P [A1(u, `, t) = a1] · P [A2(v, `, t) = a2]
.

The numerator of φ measures the probability that the same user performs a1 actions

in domain 1 and a2 actions in domain 2 in the bin (`, t). The two terms in the

denominator are the probability that an arbitrary user performs a1 actions in domain

1 in bin (`, t), and another user performs a2 actions in domain 2 in this bin. Since

5If some edges have negative weight it is possible in theory for a maximum weight matching not
to match all users. However, under our assumptions it does not happen.
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we assume that user performs actions independently, φ`,t(a1, a2) measures how much

more likely it is to observe a1 actions in domain 1 by account u and a2 actions in

domain 2 by account v if these accounts belong to the same user than if these are

two different users.

Note that, in the above definition of φ`,t, the probability is taken in the model

we introduce (i.e., that of independent actions taken conditioned on Poisson visits).

This yields multiple equivalent formulas to compute the ratio φ`,t:

Lemma 1. The value of φ`,t(a1, a2) in the model we introduce is equal to any of the

following expressions (where λ`,t is denoted by λ for ease of notation):

(i)
P [A1(u, `, t) = a1 ∧ A2(v, `, t) = a2 | σI(u) = v]

P [A1(u, `, t) = a1] · P [A2(v, `, t) = a2]
.

(ii)
e−λ

∑
k≥max(a1,a2)

λk( ka1)(1−p1)
k−a1( ka2)(1−p2)

k−a2

k!∑
k≥a1

λk( ka1)(1−p1)
k−a1

k!
·
∑

k≥a2
λk( ka2)(1−p2)

k−a2

k!

.

(iii) e−λ(1−p1−p2)

(λ(1−p1))a1 (λ(1−p2))a2
∑

k≥max(a1,a2)
(λ(1−p1)(1−p2))kk!

(k−a1)!(k−a2)! .

(iv) e−(λp1p2)(1−p1)a2 (1−p2)a1
(λ(1−p1)(1−p2))min(a1,a2)

E
[
(X+max(a1,a2))!
(X+|a1−a2|)!

]
,

for expectation taken over X a Poisson variable with parameter r = λ(1 −

p1)(1− p2).

Proof. (i) becomes (ii) once we develop each probability by conditioning on the num-

ber of visits k that u and/or v make to the bin (`, t), and we observe that a few terms

simplify. To obtain (iii) one should observe by the Poisson sampling property that

A1(u, `, t) is also distributed according to a Poisson variable, with parameter (λp1).

This simplifies the denominator which then yields this expression. Finally, to obtain

(iv), it suffices to introduce the change of variables k′ = k −max(a1, a2) and notice

that the series becomes this expectation taken over all possible values taken by X.

Our algorithm, formalized immediately below, can leverage any of the above for-

mulas to approximate φ. Expression (i) is the most general (and holds even for

non-Poisson visits). Using (iv) with p1 = p2 and a1 = a2 = a we see that the score is
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especially large when λ is small (as this visit is rare) and a is large (the common ob-

servations occurs more than once). For each pair of records, the algorithm computes

all the scores associated with the (location,time) bins. It sums them across all bins

to compute the weight of the edge between this pair.

Algorithm 1 Our reconciliation algorithm

Require: ∀u ∈ U : r1(u),∀v ∈ V : r2(v), {λ`,t}
for (u, v) ∈ (U × V ) do
w(u, v) =

∑
t∈T
∑

`∈L lnφ`,t (a1(u, `, t), a2(v, `, t))
end for
Let E = {w(u, v) : (u, v) ∈ (U × V )}
Compute the maximum weighted matching on the bipartite graph B(U, V,E)
return the function that maps matched vertices.

While the algorithm is conceptually well defined, there are two things to note

about its implementation. First, the input includes the set of parameters of the

Poisson distribution, {λ`,t}; these are not known, but can be estimated (see discussion

in Section 2.5). Second, the definition of φ involves infinite sums over all values of

k ≥ a1, a2. We prove below that this can be approximated to arbitrary precision by

taking the sum over a limited number of terms.

We now justify our algorithmic approach, and prove that the expected score is

highest for the true matching.

Relation to Maximum Likelihood

We explain our choice of the function φ (and hence our specific weight function

w(u, v)) by showing that the weight of a matching is proportional to its log likelihood,

and the matching with maximum expected weight (i.e. maximum expected likelihood)

is indeed the true matching σI .

The observed inputs to the algorithm are the mobility records r1, r2. Taking a

maximum likelihood estimation (MLE) approach, our goal is to find the matching or
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permutation σ that maximizes the likelihood P [σ | r1, r2]. As is standard, we have:

P [σ | r1, r2] =
P [R1 = r1, R2 = r2 | σ] · P [σ]

P [R1 = r1, R2 = r2]

Assuming a uniform prior over all permutations σ, it is easy to see that we are

trying to find the permutation σ maximizing P [R1 = r1, R2 = r2 | σ].

Assuming σ is the true permutation / mapping, since mobility of different users is

independent, the probability of observing various actions for u depends only on the

actions of σ(u) = v. Therefore, we have:

P [R1 = r1, R2 = r2 | σ] =
∏

u,v:σ(u)=v

∏
`∈L

∏
t∈T

P [a1(u, `, t), a2(v, `, t) | σI(u) = v] (2.1)

To normalize this probability, we divide by the overall probability of observing

r1 and r2 in the two domains. Since P [R1 = r1] =
∏

u

∏
(`,t)∈L×TP [A1(u, `, t) =

a1(u, `, t)] and P [R2 = r2] =
∏

v

∏
(`,t)∈L×T P [A2(v, `, t) = a2(v, `, t)] we note in

particular that P [R1 = r1] · P [R2 = r2] does not depend on σ. Hence dividing

Eq.(2.1) by it does not change which σ maximizes the likelihood.

Combining these, it is easy to observe that the likelihood of σ is proportional to:

P [R1 = r1, R2 = r2 | σ]

P [R1 = r1] · P [R2 = r2]
=

∏
u,v:σ(u)=v

∏
(`,t)∈L×T

φ`,t(a1(u, `, t), a2(v, `, t)

Taking the logarithm of both sides, we see that the log likelihood is proportional

to: ∑
u,v:σ(u)=v

∑
(`,t)∈L×T

lnφ`,t(a1(u, `, t), a2(v, `, t)) =
∑

u,v:σ(u)=v

w(u, v)

To put it differently, this proves that the log likelihood of σ is exactly the weight

of the matching it defines in the bipartite graphs that our algorithms constructs.

Hence, constructing a maximum-weight matching as our algorithm does is equivalent

to computing the maximum-likelihood permutation σ given our observations.

What remains to be shown is that maximum likelihood exhibits a gap, i.e., the

correct permutation σI reconciling identity of all users has an expected weight that is
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higher than any other permutation by a positive margin. Note that, since φ involves

infinite sums, we need to prove this result for the approximated expected weight that

we obtain after truncating each sum in the definition of φ.

Proof of Correctness

Recall that for each location ` and time t, we compute a score for a pair of users u and

v based on the number of observed actions a1(u, `, t) and a2(v, `, t) as the logarithm

of the function φ`,t. Fixing `, t, we drop the subscripts and simply write λ = λ`,t and

φ = φ`,t. We defined φ(a1, a2) as:

eλ
∑

k≥max{a1,a2}
λk

k!

(
k
a1

)
(1− p1)k−a1

(
k
a2

)
(1− p2)k−a2∑

k≥a1
λk

k!

(
k
a1

)
(1− p1)k−a1 ·

∑
k≥a2

λk

k!

(
k
a2

)
(1− p2)k−a2

Note that this requires taking three infinite sums, but to define a practical algo-

rithm, we cannot sum over an infinite number of terms. We now argue that for any

C, we can efficiently approximate φ to within ±1/C. More formally

Theorem 1. Let C ≥ e7 and φ′(a1, a2) be defined using the above definition of

φ(a1, a2) by truncating the numerator after max{lnC, 2 max{a1, a2}} terms, and each

factor in the denominator after lnC terms. We then have

1− 1
C
≤ φ′(a1,a2)

φ(a1,a2)
≤ 1 + 1

C
.

We now show that the expected weight of the true / identity permutation is

larger than the expected likelihood of any other permutation by a constant, even

after truncating the calculation of φ(a1, a2).

Lemma 2. For any bin (`, t) and any pair of users (u, v), then v 6= σI(u) implies

E[Score(u, v, `, t)] ≤ 0. On the other hand, v = σI(u) implies E[Score(u, v, `, t)] >

λ`,tp
2
1p

2
2K, where K = 1

2
λ(p1 + p2 − p1p2)2.
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Proof. Since we have a fixed `, t, we use φ to denote φ`,t, λ to denote λ`,t, and

A1(u), A2(v) to denote A1(u, `, t) and A2(v, `, t) respectively. First, consider the case

v 6= σI(u). The expected value of φ, i.e., E[φ(A1(u), A2(v))] can be rewritten:∑
a1,a2

P [A1(u) = a1]P [A2(v) = a2] · φ(a1, a2)

=
∑
a1,a2

P [A1(u) = a1]P [A2(v) = a2]

×
(
P [A1(u) = a1 ∧ A2(v) = a2 | v = σI(u)]

P [A1(u) = a1] · P [A2(v) = a2]

)
=

∑
a1,a2

P [A1(u) = a1 ∧ A2(v) = a2 | v = σI(u)] = 1

where the final equality comes from summing probabilities over the entire domain of

the joint distribution. By Jensen’s inequality:

E[Score(u, v, `, t)] = E[lnφ(A1(u), A2(v))]

≤ lnE[φ(A1(u), A2(v))] = ln 1 = 0

We now consider the harder case, when v = σI(u).

E[Score(u, v, `, t)] = E[lnφ(A1(u), A2(v))]

=
∑
a1,a2

P [A1(u) = a1 ∧ A2(v) = a2 | v = σI(u)] · lnφ(a1, a2).

To simplify notation below, we use X(a1, a2) to denote P [A1(u) = a1∧A2(v) = a2 |

v = σI(u)], and Y (a1, a2) to denote P [A1(u) = a1] · P [A2(v) = a2]. The distributions

X and Y give the probabilities of observing a1 and a2 actions in the two domains

assuming the users are the same, and are not the same respectively. Using this

notation, we have:

E[Score(u, v, `, t)] =
∑
a1,a2

X(a1, a2) ln
X(a1, a2)

Y (a1, a2)
= I(A1;A2)

where I(A1;A2) denotes the mutual information between A1 and A2, which is also

equal to DKL(X ‖ Y ), the Kullback-Leibler (KL) divergence of Y from X; this

quantity is always non-negative.
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We have already shown that for v 6= σ(u), the expected score is at most 0. On the

other hand, for v = σ(u), we have the expected score being non-negative. However,

we wish to go further and prove that E[Score(u, v, `, t)] is lower bounded by a positive

constant in the latter case.

To do this, we apply the following lower bound:

I(A1;A2) = X(0, 0) ln
X(0, 0)

Y (0, 0)
+

∑
a1,a2 6=(0,0)

X(a1, a2) ln
X(a1, a2)

Y (a1, a2)

≥ X(0, 0) ln
X(0, 0)

Y (0, 0)
+ (1−X(0, 0)) ln

(1−X(0, 0))

(1− Y (0, 0))
.

We now evaluate X(0, 0) and Y (0, 0) respectively.

X(0, 0) =
∑
k≥0

e−λ
λk

k!
(1− p1)k(1− p2)k

= e−λ(p1+p2−p1p2)
∑
k≥0

e−λ(1−p1)(1−p2)
(λ(1− p1)(1− p2))k

k!

= e−λ(p1+p2−p1p2) ≥ 1− λ(p1 + p2 − p1p2)

where the last equality is because the preceding sum contains all probabilities from

a Poisson distribution with rate parameter λ(1− p1)(1− p2), and the final inequality

comes from the Taylor series expansion of e−x. Similarly, we have:

Y (0, 0) =

(∑
k≥0

e−λ
λk

k!
(1− p1)k

)
·

(∑
k≥0

e−λ
λk

k!
(1− p2)k

)
= e−λp1e−λp2

= e−λ(p1+p2)

This yield a lower bound on the mutual information above:

First, X(0, 0) ln
X(0, 0)

Y (0, 0)

≥ (1− λ(p1 + p2 − p1p2)) ln
e−λ(p1+p2−p1p2)

e−λ(p1+p2)

= (1− λ(p1 + p2 − p1p2))λp1p2 .

Then (1−X(0, 0)) ln
(1−X(0, 0))

(1− Y (0, 0))

≥ λ(p1 + p2 − p1p2) ln
(1− e−λ(p1+p2−p1p2))

(1− e−λ(p1+p2))
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Median
Dataset Domain Users Checkins Checkins Locations Date Range

FSQ-TWT Foursquare 862 13,177 8 11,265 2006-10 – 2012-11
Twitter 862 174,618 60.5 75,005 2008-10 – 2012-11

IG-TWT Instagram 1717 337,934 93 177,430 2010-10 – 2013-09
Twitter 1717 447,366 89 182,409 2010-09 – 2015-04

Call-Bank Phone Calls 452 ∼200k ∼550 ∼3500 2013-04 – 2013-07
Card Uses 452 ∼40k ∼60 ∼3500 2013-04 – 2013-07

Table 2.1: Overview of datasets used in study. For FSQ-TWT and IG-TWT, number
of locations refers to locations at a 4 decimal GPS granularity (position within roughly
10m).

Combining these terms and applying algebraic manipulation yields the desired

result with the appropriate value of K. This work was primarily completed by my

collaborators, Silvio Lattanzi and Nitish Korula, though with the assistance of the

other authors (Yunsung Kim, Augustin Chaintreau, and myself). As such, I place

this proof in the appendix (see Appendix A) instead of here.

2.5 Comparison and Case Studies

Having established the theoretical guarantees for our algorithm, we now compare its

performance to alternative reconciliation algorithms, inspired by the state of the art.

We describe our datasets, the baselines we compared against, some of our real-world

implementation, and our results.

Datasets

Studying the cross domain problem is challenging due to the difficulty in obtaining

ground truth. We used a total of three datasets (each from different pairs of spatio-

temporal domains) to evaluate the performance of Algorithm 1.
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Foursquare–Twitter Our first dataset, labeled FSQ-TWT, links checkins on the

location-based social network, Foursquare, to geolocated tweets. This dataset was

collected previously in [135]. After selecting users with locations present in both

dataset, we obtain 862 users with 13,177 Foursquare checkins and 174,618 Twitter

checkins.

This dataset presents an interesting challenge. There is a large imbalance in data,

with many more tweets than Foursquare checkins.

Additionally, the domains are somewhat different– whereas Foursquare checkins

are typically associated with a user showing what they are currently doing (in par-

ticular, eating at a restaurant), tweets are more general and associated with more

behaviors. To verify that tweets and checkins were usually not one event forwarded

by software across both services, which could make this dataset artificially easy, we

looked at if checkins matched exactly on time place. Only 260 pairs of checkins (less

than 0.3%) had exactly matching GPS coordinates, and of those, none were within 10

seconds of each other. Beyond this, we reduced all coordinates to 4 digits of accuracy

(around 10m), removing low level GPS digits that could be used as a “signature”.

Instagram–Twitter Our second dataset, referred to as IG-TWT, links users on

the photo-sharing site, Instagram, to the microblogging service, Twitter. We obtained

this data in the following manner: First, we download publicly available location data

from Instagram, saving user metadata if he or she had at least 5 geotagged photos

in their 100 most recently uploaded photos. For each photo, we did not download

or save any images, instead only using latitude-longitude pairs, times, and a user

identifier. To find more profile IDs to crawl, we used the profile IDs of anyone who

commented or “liked” a crawled user’s photos. We started this process with the

founder of Instagram, a central node whose photos are commented on or receive

“like” from a diverse set of users. This process yielded 120K users with 35M checkins
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(i.e. time, latitude-longitude pairs from a geolocated photo).

On Instagram, a user can associate a single URL with their profile. We ana-

lyzed these URLs, looking for URLs which matched Twitter accounts. Of these, we

manually examined 50, finding that all profiles were correct matches based on profile

name, profile picture, and/or posted photos, when available. Then, using Twitter’s

API, we crawled all publicly available tweets for those users, again saving latitude-

longitude pairs, time, and user identifier for geolocated tweets. This process left us

with 1717 matched users, with a total of 337,934 Instagram checkins and 447,366

Twitter checkins.

This dataset promises to be the “easiest”, due to the large number of photos and

tweets per user (median 93 and 89, respectively). Picture-taking and tweeting appear

to be somewhat different behaviors, but related in the sense that both are actions

whereby a user communicates an action or message to a larger, public audience. To

again verify that tweets and Instagram posts were not one event forwarded to both

services via software, we again looked at exact matches in low-level GPS coordinates

and time. Only 2415 pairs of checkins (around 0.6% of all checkins) had exactly

matching GPS coordinates, and of those, only 2 were within 10 seconds of each

other. Again, all coordinates were then reduced to 4 digits.

Cell Phone – Credit Card Record Our third and final dataset contains a log

of phone calls (referred to as call detail records or “CDR”) linked to credit card

transactions (referred to as “bank” data) made by 452 users from a G20 country over

4 months from April 1st through July 31st, 2013. We will refer to this dataset as

Call-Bank. The linking was made by two companies who originated the data, a

telecommunications and credit card company, respectively. Each record of a phone

call in the CDR data consisted of a phone number, time, and cell tower ID with

its latitude-longitude coordinates. Each record of a credit card transaction in the
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bank data consisted of the latitude and longitude of the geolocated business at which

the transaction was made, along with the time and phone number of the credit card

owner. These transactions only included in-person visits, as opposed to online or

over-the-phone transactions. The two companies hashed the phone number using

the same hash function, and associated this hash with the information for that user.

This information was then passed to a third party. The researchers from Columbia

University accessed this information on a secure, remote server.6 At no time were the

real phone numbers or credit card numbers available or utilized.

The two datasets log location in different ways. For the CDR data, a user could

have been anywhere within range of the associated cell tower. The bank data, how-

ever, have a more precise localization. To link the two, we compute the Voronoi

diagram generated by cells’ locations. We then say that a business location is the

same as a cell tower if it is contained in this tower’s Voronoi cell. Note that this is a

clear demonstration of the need for location bins (in this case, the Voronoi cells), as

introduced in our model.

The original data is extremely sparse, and contains above 70k users common to

the two datasets. However, many users have no calls or bank transactions in the

same location, because about 80% of users have fewer than 10 transactions, meaning

they use their credit card on average roughly once every two weeks. To make the

problem more tractable, we used a smaller subset of active users, by discarding those

that made fewer than 50 bank transactions throughout the entire span (i.e., keeping

those making a transaction on average every 2-3 days). It amounts to a total of 452

users, whose transactions and calls are dispersed throughout a total of over 3500 cell

towers.

This dataset promises to be extremely challenging. Phone calls and credit card

transactions are very different activities, and it is not expected that they occur for

6The researchers from Google never had access to this data.
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a user in the same place at the same time. Indeed, only 294 of our 452 active users

had even at least one location in common across domains.

Summary We summarize the statistics on the datasets in Table 2.1. Note that

although our datasets have the same set of users in both domains, our algorithm can

run without this requirement– our algorithm will simply leave some users unmatched.

Although by some standards these datasets are small, their size is comparable to

previous studies [135, 108] and it is difficult to obtain cross-domain datasets of greater

magnitude while still maintaining high levels of accuracy.

Prior Algorithms

We compare our algorithm with three state of the art reconciliation techniques, which

we briefly describe in the rest of this subsection.

Exploiting Sparsity: The “Netflix Attack” The first reconciliation technique

that we consider is a variation of the algorithm used to de-anonymize the Netflix

prize dataset [88]. The Netflix algorithm cannot be applied directly to our setting,

but is not hard to adapt. The algorithm first defines a score between users u and v

as follows:

S(r1(u), r2(v)) =
∑

(l,t)∈r1(u)∩r2(v)

wlfl(r
1(u), r2(v)) ,

where wl = 1

ln(
∑
v,t a2(v,l,t))

and fl(r
1, r2) is given by

e

∑
t a1(u,l,t)

n0 + e
− 1∑

t a1(u,l,t)

∑
t:(l,t)∈r1 mint′:(l,t′)∈r2

|t−t′|
τ0 .

Note that n0 and τ0 are unspecified parameters of the algorithms. This score

function considers the visits of u to the locations near v’s trajectories. In resemblance

to the score function in [88], it favors locations that are visited less often, as they are

considered more discriminative just like in [32], frequent visits to the same location,
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and visits that occur shortly before or after v’s traces. The algorithm declares a user

u with the best score to be a match for a user v if the score of the best candidate and

the score of the second best candidate differ by no less than ε standard deviations

of all candidate scores - otherwise the user is unmatched. Intuitively, this algorithm

is designed to exploit sparsity, using unique, rare occurrences in two datasets to link

users. For future use, we refer to this algorithm as NFLX.

Exploiting Density: Histogram Matching In [119] the authors leverage fre-

quency of visits to location as a fingerprint of individuals across datasets. Let Γ1
l (u)

be the fraction of time that user u is in location l in the first dataset and Γ1(u) be

the distribution across different locations. For each pair of user u and v the weight

w(u, v) between them is defined using the Kullback-Leibler divergence:

D

(
Γ1(u)

∥∥∥∥Γ1(u) + Γ2(v)

2

)
+D

(
Γ2(v)

∥∥∥∥Γ2(v) + Γ1(u)

2

)
.

Each edge weight reflects the degree of disparity between two users. This algorithm

computes a minimum weight matching for the complete bipartite graph drawn be-

tween individuals, as a way to minimize that disparity. In contrast to NFLX, this

algorithm relies on the density of data, assuming that over time even in different

periods a unique histogram of user visits will emerge from a user’s behavior. In the

remaining we refer to this technique as HIST. Note that other methods use frequency

of visits to define similarity, such as [32]. It can be shown under similar assumptions

to our model that within the categories of algorithms that only leveraging density,

HIST provably provides the minimum error and that it decreases fast as more data

are available [120].

Alternative: Frequency-Based Likelihood As a third comparison we consider

the reconciliation technique introduced in [108], which approximates the likelihood

of a visit made in one domain by the frequency of visits for that user in the other
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domain, hence assuming:

P
(
l | r1(u)

)
=

∑
t a1(u, l, t) + α∑

l′,t a1(u, l
′, t) + α|L|

,

where α > 0 is a parameter. This regularization, sometimes referred to as Laplacian

smoothing, prevents null empirical frequencies from leading to an infinite score. The

mapping (that we denote by WYCI after the title of the paper) is then computed

as σ(u) = arg maxv
∏

(l,t)∈r2(v) P (l | r1(u)). The paper introduces another distance

parameter, but later claims it has negligible impact, as we also observe ourselves.

Implementing Algorithm 1 in Practice

Parameter Estimation In our experiments we partition the time interval into

1024, 2048, 3072 and 4096 time bins. In each time bin we de-duplicate visits to the

same locations. In the rest of the paper we describe the results for 4096 time bins,

although as we show, similar results hold for different binning.

Our algorithm requires knowing the three main parameters p1, p2 and λl,t for each

bin (l, t). Unfortunately, using single domain observations separately, the problem is

ill posed. For instance parameters (p1, p2, λ) and (p1
2
, p2

2
, 2λ) are simply indistinguish-

able from a marginal standpoint. On the other hand, by conditioning on bins (l, t)

where an action in domain 1 is observed, we have

p2 ≈
∑

u

∑
t

∑
l min(a1(u, l, t), a2(σI(u), l, t))∑

u

∑
t

∑
l a1(u, l, t)

,

at least in expectation. But this formula requires knowing σI , which is precisely the

unknown we aim to find. A critical observation we make is that approximating p1 and

p2 is good enough. All we need is a candidate permutation σ to match user across

different domains only for the sake of parameter estimation. In our experiment we

use the output of the HIST as our candidate permutation σ. While it is possible to

iterate once a new permutation is found to refine even further, we observe in practice

that it is not necessary.
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Finally, we have to estimate λl,t. Unfortunately most datasets are sparse and do

not allow separate estimation of λl,t accurately at each time and location. However,

we found that assuming that λl,t is constant across time allows a first estimate of

a location-normalized popularity given by ρl ≈
∑
u

∑
t ai(u,l,t)∑

u

∑
t

∑
l ai(u,l,t)

. The parameter λ

can then be computed by aggregating observations on all locations together with

normalizing factors removed:

λ ≈ 1

(|U |+ |V |)|T |
∑
l

(∑
u,t a1(u, l, t)

p1ρl
+

∑
v,t a2(v, l, t)

p2ρl

)
.

Later, we show that estimated parameters are quite robust and resemble ground truth

estimated from the true matching.

Additional Feature Finally, we introduce for practical settings an “eccentricity”

factor ε, which works as follows. After a matching is computed, we only output this

edge if the matched candidate’s score differs from the second-best by more than ε

times the standard deviation of all candidates.

Comparison on Real Cases

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

FSQ-TWT

HIST

NFLX

POIS

WYCI

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

IG-TWT

HIST

NFLX

POIS

WYCI

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

Call-Bank

HIST

NFLX

POIS

WYCI

Figure 2.3: Precision and Recall plots for each dataset.

We now turn our attention to experimental performances of our algorithm. In Fig-

ure 2.3, we show the precision recall plots for our algorithm (for different eccentricity
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values) and for the other three reconciliation techniques: HIST, NFLX and WYCI.

For our algorithm, we used estimated parameters and for the other techniques, we

used optimal parameters (found via exhaustive search).

There are several interesting observations that we can make on Figure 2.3. First,

on the public dataset FQ-TWT our algorithm outperforms all prior methods (espe-

cially in precision). Nevertheless it is interesting to note that the precision of all

methods is not ideal, probably due to sparsity of the data.

A second interesting observation is that our algorithm achieves very high precision

when the dataset is more rich. In fact when we then turn our attention to our

second dataset, the live service (IG-TWT) that we crawled, we obtain almost perfect

precision. Note that not all the other techniques, for example NFLX, are able to

leverage the denser data, as much.

Finally we test our method on a much more heterogeneous dataset (Call-Bank)

that is also more realistic and sensitive. In this setting our algorithm outperforms pre-

vious techniques, with none of the previous algorithms able to achieve good precision

and recall at the same time.

Figure 2.4: Best precision and recall performance for each technique in various
datasets.

In Figure 2.4 we present the best performances of the four techniques in the three

dataset. It is interesting to notice that our algorithm gives the best trade-off between
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precision and recall. In particular, even if other techniques achieve sometimes better

precision or recall our algorithm is not dominated by other algorithms. In fact it is

always Pareto optimal in respect of the precision recall curve, and the only algorithm

for which this is true.
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Figure 2.5: Number of checkins vs. our algorithm’s accuracy.

We now investigate the impact of the number of user checkins on accuracy. In

Figure 2.5, by binning users into quartiles based on number of checkins, and observing

the accuracy, we can see that that our algorithm is able to leverage both the amount of

the data and its uniqueness. In fact the performance of our algorithm are positively

correlated both with the number of checkins and with the entropy of the visited

location.

We next turn our attention to the impact of our estimated parameters. As men-

tioned in Sec. 2.5, we cannot know the exact values of p1, p2, and λl,t. When running

our algorithm, we first found a guess at a permutation, and used that matching to

estimate the parameters. Comparing this with using the true permutation, we can see

how far off our guess was and the impact on the algorithm. Fig. 2.6 shows two lines,

one using parameters derived from the real permutation and one using an estimate.

Clearly, using the estimate is as good as using the real permutation, and is in fact

better at certain time levels. Additionally, this figure shows that there is only a small
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Figure 2.6: Effect of parameter estimation and time binning on algorithm perfor-
mance.

boost in performance when using differently sized time bins. This is helpful in that

it seems the algorithms performance is largely unaffected by choice of parameters.

Finally we show in Figure 2.7 the effect of eccentricity and number of terms (of

the infinite sum) on performances of our algorithm. The eccentricity is a term that

rejects links if other candidates are also very likely. A higher eccentricity should thus

correspond with greater precision at the cost of lower recall. In these figures, we

can see that this relationship indeed holds, allowing users to potentially find only

the strongest matches, perhaps as “seed” links for other algorithms. The number of

terms appears to have little effect on algorithm performance, empirically validating

our proof that our approximation appears to have little impact on the final result.

2.6 Conclusion

User data is constantly multiplying across an increasing array of websites, apps and

services, as they are eager to share part of their behavior with service providers

to receive personalized (and free) services. Users may attempt to deal with the
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Figure 2.7: Precision and recall for the FSQ-TWT datasets for different values of the
eccentricity and varying numbers of terms of the infinite sum.

privacy implications through partially or inaccurately filled profile information (such

as entering a fake name, age, etc.), or using the privacy settings to “lock down” access.

However, such methods are of limited use, because commonly collected fields (such

as location) that are integral to the service provided may in themselves be sufficient

to link this account with other accounts of the same user.

In this paper, we present a new approach to characterize when and how such

linking is possible. We theoretically justify our algorithm and empirically validate

it on real datasets. The results we present, most of them shown for the first time

in a cross-domain setting, demonstrate that simple conditions may be sufficient for

correct reconciliation and highlight the sensitivity of location data. Several avenues

for further research are suggested by these results: Our model assumes very sim-

ple behavior by users, modeling them as generating location records independently,

and is already quite effective. Can one further exploit patterns inherent to human

mobility, such as sleep schedule, commute patterns, working days, and other time

dependencies? Is location special, or are there other universal characteristics that are

equally meaningful?
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Chapter 3

Inferring Demographics from Location Data

In the previous chapter, we discussed the re-identification risk of location data. The

lack of anonymity in location data has been widely reported, but the discriminative

power of mobility has received much less attention. In this chapter, we fill this

void with an open and reproducible method. We explore how the growing number

of geotagged footprints left behind by social network users in photosharing services

can give rise to inferring demographic information from mobility patterns. Chiefly

among those, we provide the first detailed analysis of ethnic mobility patterns in two

metropolitan areas. This analysis allows us to examine questions pertaining to spatial

segregation and the extent to which ethnicity can be inferred using only location data.

Our results reveal that even a few location records at a coarse grain can be sufficient

for simple algorithms to draw an accurate inference. Our method generalizes to other

features, such as gender, offering for the first time a general approach to evaluate

discriminative risks associated with location-enabled personalization. The work in

this chapter was presented at the Conference on Social Networks in 2015 [101], with

work contributed from Sebastian Zimmeck, Coralie Phanord, Augustin Chaintreau,

and Steve Bellovin.

3.1 Motivation and Summary of Results

Human mobility is intimately intertwined with highly personal behaviors and charac-

teristics. As Justice Sotomayor of the United States Supreme Court stated, “disclosed
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in [GPS] data ... [are] trips the indisputably private nature of which takes little imag-

ination to conjure: trips to the psychiatrist, the plastic surgeon, the abortion clinic,

the AIDS treatment center, the strip club, the criminal defense attorney, the by-the-

hour motel, the union meeting, the mosque, synagogue or church, the gay bar and

on and on [118].” For that reason, previous studies of mobility centered on the risk

of either re-identification in sensitive anonymized location datasets or on protecting

visits to private locations [84, 41].

However, the re-identification risk based on individual locations is not the only

threat. Many users are producing a series of footprints, which might be innocuous in-

dividually, however, taken together can create a sparse yet informative view allowing

inferences from their whereabouts. The benefits of revealing locations are obvious:

location data can be used for personalizing recommendations [98] and displaying more

relevant advertising [69] in order to finance free online services. However, the down-

sides are more difficult to assess. While an individual data point may create no privacy

risk, an aggregated dataset might enable inferences beyond a user’s expectation.

In this chapter we explore the discriminative power of location data. Solely based

on mobility patterns, which we extracted from photosharing network profiles, we infer

users’ ethnicities and gender both on a demographic and an individual level. As we

discuss in §3.2, this exploration stands in contrast to limitations of previous studies

as our paper brings together the following contributions:

• We show how photosharing network data can be leveraged to extract mobil-

ity patterns using a new method for creating location datasets from publicly

available resources. Our method combines the use of online social networks and

crowdsourcing platforms. It has the advantage that it generally enables anyone

to study human mobility and does not mandate access to Call Detail Records

(CDRs) or other proprietary datasets. (§3.3).

• To assess the quality of the created datasets we show that mobility patterns
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extracted from photosharing networks are comparable in terms of their essential

characteristics to those previously observed and reported for CDRs. For the first

time, we extend the analysis of mobility patterns to ethnic groups. We show

how comparisons lead to statistically significant differences that are meaningful

for assessing residential and peripatetic segregation. (§3.4).

• Finally, we demonstrate the discriminative power of location data on an in-

dividual level. Our analysis confirms for the first time that location data

alone suffices to predict an individual’s ethnicity, even with relatively simple

frequency-based algorithms. Moreover, this inference is robust: a small amount

of location records at a coarse grain allows for an inference competitive with

more sophisticated methods despite of data sparsity and noise. (§3.5).

3.2 Background

Our study complements works on human mobility patterns and attribute inference

in multiple ways.

First, the use of location data relates our study to previous inquiries into human

mobility [18, 36, 91]. In particular, we aggregate location data into mobility patterns

and compare our patterns to those published in earlier studies [6, 51, 49] for validation,

but furthermore we analyze those patterns both at an individual level and aggregated

in multiple demographic groups, including, for the first time, from the perspective of

ethnicity. This analysis complements previous studies which have shown that mobility

is correlated to social status [17] and community well-being [62] measured at city and

neighborhood levels. While some studies already demonstrated that mobility traces

can uniquely identify individuals [84, 110], the inference of individuals’ demographic

attributes from location data, that is, the discriminative power of location data,

remained unexplored. We make inferences beyond trip purpose identification [24],
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activity type prediction [67, 71], and identification of location types [50].

Previous studies aimed to infer the ethnicities, gender, and other attributes of

online users. Often they leveraged linguistic features, such as Facebook or Twitter

user names, stated first and last names [15, 79], or Tweet content [98, 99]. Those

studies demonstrated an underrepresentation of females and minorities online [79]; a

finding which we extend and confirm using photosharing services. Mobility data from

mobile phones were used to predict personality traits [82], age [11], and gender [109],

but, in addition to relying on proprietary data, all of these studies solely analyzed

call patterns or social network properties as opposed to locations. In contrast, we

attempt to infer attributes using only location data, making our work more broadly

applicable to any technology that can collect mobility information, such as GPS,

Wi-Fi, or mobile apps. We additionally examine whether predictions become more

accurate with more data, similar to [2], and how the granularity of data impacts

prediction accuracy.

More generally, our analysis fits into the category of works on extracting informa-

tion from social networks, such as [22]. Probably, the closest work is [137], which also

aims to infer meaning from locations, however, is not concerned with ethnicity. We

obtain our data from profiles of the photosharing service Instagram, and our analysis

is enhanced with auxiliary information from the geo-social search service Foursquare

and the United States Census 2010 [117] (Census). To our knowledge this is the

first study demonstrating that it is possible to extract from social networks mobility

patterns that are enriched with ethnic or gender information at an individual level.

It should be noted in particular that all aforementioned studies of mobile data rely

on proprietary data, primarily CDRs, that are only available with the consent of the

data owner (e.g., [84, 62]). In contrast, our methodology is principally reproducible

by anyone at a small cost, and our data will be made available shortly after publi-

cation. Our study provides a contribution to overcome the lack of publicly available
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mobility datasets and serves as a validator for their patterns.

3.3 Methodology and Application

User profiles on photosharing networks often contain a significant amount of photos

tagged with latitude-longitude GPS locations. Over time the accumulated location

data can build up to comprehensive mobility profiles. Based on this insight and

given that many user profiles on photosharing networks are publicly accessible we

now introduce a methodology and its application to construct mobility datasets from

readily available data. An overview of our methodology is shown in Figure 3.1.

Data Collection Applying this methodology, we collected publicly available photo

metadata from Instagram covering data for the years from 2011 through 2013. This

data collection and use was exempt from user informed consent under our institution’s

IRB rules since (1) we only collected publicly available online metadata, (2) after we

used the metadata and the users were labeled, any identifying information, such as

usernames, were removed, and (3) we only kept track of users’ identities separately

and for one single purpose (ensuring that the data we collected still belongs to a

public Instagram profile). We started our crawl from a root user (the founder of

Instagram, on whose feed a large and diverse group of users comment) and followed

further users subsequently through comments and likes. We skipped users with no

geotagged photo in their first 45 photos. Our crawl retrieved a total of 35,307,441

photo location points belonging to 118,374 unique users.

User Labeling To match previous studies [50, 51, 49] that leveraged ZIP codes of

CDR billing addresses from the Los Angeles (LA) and New York City (NY) metropoli-

tan areas we randomly chose users from those areas as well. A user’s home is the ZIP

code where he or she had the most checkins (that is, photos taken). Note that this
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mitigates the content produced by tourists and other occasional visitors to LA and

NY unless those have no other Instagram activity. A combination of workers on Ama-

zon Mechanical Turk (MTurk) and undergraduate students were asked to annotate

users’ ethnicities and gender based on the users’ photos. However, in order to ensure

that user pictures on Instagram profiles are sufficient to make a conclusive determi-

nation of users’ ethnicities and genders we ran a preliminary experiment by selecting

200 profiles at random (excluding celebrities and business accounts) and having each

labeled independently by two undergraduate students. We observed a strong agree-

ment on gender (98%). The errors corresponded to a family profile belonging to

multiple people and profiles with one picture.

For ethnicity labeling we leveraged Census categories. We asked the student an-

notators to categorize each user either as Hispanic or Latino (Hispanic), White alone

(Caucasian), Black or African American alone (African American), or Other (combin-

ing all remaining Census categories, including Asian). Merging all remaining Census

fields in the last category limits our detail view, although we would otherwise have

some annotations being quite rare. Just as in the Census, our Hispanic category

includes Hispanics and Latinos of any race, while the remaining categories do not

include any Hispanics or Latinos. We found that our profiles are diverse: 45% Cau-

casian, 21% Hispanic, 15% African American, and 19% Other. The students’ labels

matched 87% of the time and when evaluated as a binary classification task (Cau-

casian vs. all other categories) the agreement reached 94%. It should be noted that

the two labeling students were of different gender and ethnicity themselves. In con-

clusion, despite sparse data and ethnicity spanning a continuous spectrum, we found

that labels are surprisingly predictable and consistent across annotators. As studies

confirmed that 91% of teens post a photo of themselves on social networks [73] and

that 46.6% of photos are either selfies or show the user posing with other friends [47]

there is also evidence in many cases that it is actually the account owner who is
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shown in the pictures.

To scale our annotation, we asked MTurk annotators to label a larger number of

profiles for the same metropolitan areas using the same label categories. For con-

sistency, we did not reuse the profiles used for the preliminary experiment described

above. Each profile was labeled by two MTurk annotators. In cases of disagreement

between the MTurk annotators we asked one of our undergraduate annotators for

an additional label to break the tie or assign a label from a different third category.

We decided to use a tiered annotation mechanism with the undergraduate annotator

making the final decision in case of disagreements as unsupervised crowd workers

on MTurk or similar platforms tend to be less attentive than physically available

workers [93], who also have the possibility to ask clarifying questions. We were also

careful to not drop any labels to avoid the introduction of a systematic annotation

bias. Over two days 117 MTurk annotators participated in our task resulting in 1,015

properly labeled users with the labels shown in Figure 3.2. On the first day the an-

notators were compensated $0.10 per annotation and on the second day $0.05. The

undergraduate annotator was compensated the regular stipend at our institution.

In order to measure the quality of agreement among the annotators we made use of

Krippendorff’s α [58]. Generally, values above 0.8 are considered as good agreement,

values between 0.67 and 0.8 as fair agreement, and values below 0.67 as dubious [74].

Figure 3.2 shows that we obtained fair and good agreement and, thus, reliable ground

truth for both our ethnicity and gender classifications.

Adding Auxiliary Information We collected auxiliary information from two

sources. First, for the comparative analysis of demographic patterns with our data in

§3.4 we used data from the Census [117] to associate geographic regions with gender

and ethnicity distributions. Throughout the study we use Census-defined geographic

granularities, ranging from block groups of 600-3k people to neighborhood tabula-
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tion areas (NTAs; 15k people), public use microdata areas (PUMAs; 100k people),

and counties with populations of up to 2.6 million. We adjusted the distributions

by ethnicity- and gender-specific Internet [30, 72] and Instagram [25] usage numbers.

As explained in §3.4 we also took into account that Caucasian Hispanics are often

perceived as Caucasian alone [77]. Second, for each checkin we obtained Foursquare

information on the ten closest venues. We then used Foursquare’s average venue

popularities and venue categories as features for our inference algorithms (§3.5) since

those features could provide an estimate of the types of places a user would visit.

3.4 Mobility-Demographics

We now present a mobility pattern analysis for various population levels. Our dataset

reveals mobility trends similar to those of CDRs (§3.4) and generally represents the

adjusted Census population well (§3.4). In many cases we are able to detect differ-

ences in mobility patterns between ethnic groups and genders that can be plausibly

explained by previous sociological findings (§3.4), and we are also able to detect

segregation among ethnic groups (§3.4).

Mobility Patterns

In order to compare the mobility patterns of our dataset to those in the CDR dataset

of [51, 49] we only consider checkins for the years 2011 through 2013 each for the

Spring months from March 15 to May 15 and for the Winter months from November

15 to January 31 (the LA and NY Spring and Winter subsets, respectively). Table

3.1 shows the distribution of the data in our subsets compared to those in the CDR

dataset [51]. The mobility traces from our subsets are much more sparse. Most

notably, while the CDR dataset has at least eight location points from call activity

per day for the median user in LA and NY—and even 12 if text messages are added—
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Spring Winter
Statistic LA NY LA NY

Total Checkins 135,503 109,506 118,446 98,286
(Total CDRs) (74M) (62M) (247M) (161M)
Min. Loc./Day 1 1 1 1
1st Qu. Loc./Day 1 1 1 1
Med. Loc./Day 1 1 1 1
(Med. Calls/Day) (9) (10) (8) (9)
(Med. Texts/Day) - - (4) (3)
Mean Loc./Day 1.97 2.12 1.96 2.1
3rd Qu. Loc./Day 2 2 2 2
Max Loc./Day 73 62 98 69

Table 3.1: Statistics of our LA and NY subsets compared to the CDR dataset in [51]
(where available, in parentheses). Our calculations do not consider any day where a
user had no checkins.

the data in all of our subsets account for only one location point for the median user

per day.

Another insightful metric for comparing mobility patterns is the daily range, de-

fined as the maximum straight line distance a phone has traveled in a single day [49].

Daily ranges are characteristic for mobility because, for example, median daily ranges

on weekdays represent a lower bound for a commute between home and work loca-

tions [49]. Figure 3.3 shows a subset of our results. Our ranges are generally smaller

than those reported by [51, 49]. However, the general trends in both datasets are

similar. Most importantly, people in LA have generally greater ranges than people

in NY. Also, in both areas people tend to travel longer during the day than at night.

However, there are also differences: according to our data New Yorkers in the 98th

percentiles travel farther than Angelinos.

Demographic Patterns

As our LA and NY subsets are annotated with ethnicity and gender labels (§3.3)

we are able to compare the resulting demographic distributions to the respective

Census distributions. However, initial comparisons reveal substantial differences. For
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example, according to the Census there are more females than males (53% vs. 47%)

living in Kings County [117] while our observed label frequencies suggest that there

should be substantially fewer (43% vs. 57%). This result is even more surprising

as the gender-specific usage rates of Internet (70% vs. 69%) [30] and Instagram

(16% vs. 10%) [25] should further increase the percentage of females beyond the

Census. However, while 86% of female social network account owners set their profile

to private, only 74% of males do so [72]. Adjusting the Census distribution for this

difference (as well as for gender-specific Internet and Instagram usage rates) leads to

a distribution of females and males (49% vs. 51%) much closer to the distribution

we observed for our labels.

Similarly to gender, we make adjustments to the Census distributions for the vary-

ing percentages of Internet and Instagram usage rates among different ethnicities as

well. However, even then we still observed a substantial Hispanic underrepresentation,

which was also observed for the southwest of the United States by [79]. We found this

phenomenon difficult to assess, specifically, as ethnicity is not significant for setting

a profile private [65], activity levels (posting pictures, etc.) are not lower for Hispan-

ics [113], and our annotation disagreements are not higher when the Hispanic label

is involved. However, we believe that the reason for the underrepresentation is the

perception of Caucasian Hispanics as Caucasian alone. In a study, six of seven Cau-

casian Hispanics reported that others see them as Caucasian alone [77]. Therefore,

we believe that most Caucasian Hispanics were actually labeled as Caucasian (i.e.,

our annotators agreed on an incorrect classification). Thus, we adjusted the observed

label frequencies by adding to the Hispanic labels a number of labels corresponding

to the Census percentage of Caucasian Hispanics and subtracting the same number

from the Caucasian labels.

We perform chi square tests for goodness of fit comparing the gender and ethnicity

distributions of our labels to the corresponding Census distributions for different levels
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of granularity. In most cases we obtain a value of p > 0.05 and find no evidence to

reject the null hypothesis that the observed gender and ethnicity distributions follow

the corresponding Census distributions. For example, as shown in Figure 3.4, for

eight out of 11 counties in the NY area our tests resulted in p > 0.05 providing no

evidence that our multi-category ethnicity distributions deviate significantly from the

Census distributions. However, there are also cases with differences. It is no surprise

that this is true for the state level as our distributions only cover users from the

LA and NY metropolitan areas. However, overall we believe our results suggest that

geotag data often replicate demographic trends faithfully.

Mobility Patterns by Demographic

By combining our methodologies from the previous two subsections we now show

the differences in mobility patterns between ethnic groups and between males and

females, respectively. In particular, we examine differences in daily ranges, home

ranges, and temporal checkin characteristics.

Daily Ranges Figure 3.5 shows some of our daily range results for ethnic groups

and genders based on our sets of labeled users for LA and NY. We obtained the

same types of daily ranges as described earlier in Figure 3.3, however, this time for

all days of the year. It is striking that Caucasians generally have a higher maximum

daily range than the other ethnic groups. Indeed, a two sample Kolmogorov-Smirnov

test reveals that the Caucasian range distribution differs significantly (p < 0.05)

from the African American and Hispanic distribution. This result illustrates a more

general finding: daily ranges of Caucasians often differ significantly from those of

minorities. For 44% (8/18) of the comparisons of a Caucasian distribution to a

minority distribution (three comparisons for maximum weekday, three for median

weekday, three for median at night—each for LA and NY) the difference is significant
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at the 0.05 level. However, for the comparisons among minority distributions we only

find 6% (1/18) to be significantly different from each other.

The differences in ranges by ethnicity can be most prominently observed in the

comparisons of Caucasians to African Americans and to Hispanics. However, it should

be noted that at night all ethnicities exhibit very similar ranges. This finding stands

in contrast to the difference in daily ranges between males and females. In fact, the

only statistically significant difference (p < 0.05) that we observed between male and

female ranges occurs for the median daily ranges at night. As shown in Figure 3.5,

females tend to travel smaller distances at night than males. There are many possible

explanations for this phenomenon. One reason could be that women travel fewer

times at night due to safety concerns [4] and, consequently, also avoid longer trips.

In general, for both males and females—as well as for all ethnicities—we find that

our observed daily ranges follow a (skewed) log normal distribution.

Home Ranges In order to evaluate differences in mobility with respect to an indi-

vidual’s home location we complement the analysis of daily ranges with the evaluation

of home ranges. A home range is a straight line distance between someone’s home and

another place to which the person travels. Different from daily ranges we calculate

the home ranges not on a daily basis, but instead consider all home ranges—whether

they were the maximum travel distance for a day or not. Based on a user’s home

location, as specified in §3.3, we calculate the distance between the home and each

checkin for the different ethnic groups and genders. Figure 3.6 shows the resulting

CCDFs for the home ranges of the NY users.

Both graphs show a noticeable decrease around the 2,500 mile mark, which is the

distance from NY to major hubs on the West Coast of the United States (most notably

LA (2,475 miles), San Francisco (2,563 mi), and Seattle (2,405 miles)). Males and

females have very similar home ranges at the edges of the graph. However, females
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travel farther in the medium home ranges. This finding could be based on the fact

that women generally take more often vacations [55] and travel longer distances to

work when they are employed full-time [61]. It should be noted that the larger home

ranges are not inconsistent with the previous observation of shorter ranges for females

at night as that result does obviously not consider ranges during the day. The plot

for ethnicity is in line with our previous observation that Caucasians travel farther

from home than minorities.

Temporal Checkin Characteristics Beyond spatial differences we explore differ-

ences in temporal activity as well. Figure 3.7 shows histograms for checkins by hour

of day. As might be expected, we observe periodic behaviors with low checkin levels

between 4–6am and peak levels from 3–8pm. On weekends the lows occur at later

times than on weekdays suggesting that users wake up later on weekends. We also

see a dramatic increase in activity after 5pm on weekdays, which could correspond

to the time at which many users get off of work. When broken up into Caucasians

and minorities, we see fairly similar curves, except with a more pronounced weekday

after-work increase for minorities. It could be the case that Caucasians work more

often in flexible environments. We observe no substantial differences between genders

or NY and LA.

Ethnic Segregation

Location data are the basis for measuring residential segregation, that is, the degree

to which two or more groups live separately from one another in different parts

of the urban environment [75]. Trends in residential segregation characterize a

group’s proximity to community resources (e.g., health clinics) and its exposure

to environmental and social hazards (e.g., poor water quality and crimes) [100].

In addition to residential segregation we also introduce and evaluate mobility
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segregation, which we understand as the degree to which two or more groups move

to and from different parts of an area. Mobility segregation allows for a dynamic

view of segregation, for example, in order to determine a group’s ease of access to

community resources away from home.

Methodology Various intersecting dimensions of segregation can be distin-

guished [75]. We explore two standard measures, each for a different dimension:

the interaction index measures the dimension of exposure (the extent to which mi-

nority group members are exposed to majority group members in an area [75]) and

the entropy index measures the dimension of evenness (the extent to which minority

group members are over- or underrepresented in an area [75]). The interaction index,

B, can be understood as the probability of a minority group member interacting with

a majority group member and is defined [124] by

Bkl =
∑

(
nik
Nk

)(
nil
ni

), (3.1)

where nik is the population of ethnic minority group k in area i (e.g., in a ZIP code

area), Nk is the number of persons in group k in the total population of all areas, nil

is the population of ethnic majority group l in area i, and ni is the area population.

The entropy index was used in social network research before [22] and has the

advantage over other indices that it can be used to measure segregation for more

than two groups. We define the entropy index [124], H, as

H =
H∗ − H̄
H∗

, (3.2)

58



where H∗ is the population-wide entropy defined by

H∗ = −
K∑
k=1

Pkln(Pk), (3.3)

and H̄ is the weighted average of the individual areas’ entropies defined by

H̄ = −
I∑
i=1

ni
N

K∑
k=1

Pikln(Pik), (3.4)

where K is the number of different ethnic groups, Pk is the proportion of ethnicity

k in the total population, I is the number of different areas, ni is the population in

an area, N is the sum of the population from all areas, and Pik is the proportion of

the population of ethnicity k in area i (while it is defined that Pikln(Pik) = 0 for

Pik = 0).

For both interaction and entropy indices we make use of our sets of labeled users

for LA and NY, however, exclude all areas for which the label distribution deviated

significantly from the Census distribution as indicated by p ≤ 0.05. Thus, for exam-

ple, as shown in Figure 3.4, on the county level we do not include Queens, Kings,

and Bergen. These exclusions are necessary as otherwise the accuracy of our results

decreases substantially. Recall that we define a user’s home as the ZIP code where he

or she had the most checkins (§3.3) and that we adjust label and Census distributions

(§3.4).

Residential Segregation Tables 3.2 and 3.3 show our results for the interaction

and entropy indices, respectively. For the most part the interaction between Cau-

casian and minority group members can be considered fairly high [48]. All three mi-

norities in LA and NY have similar probabilities of interacting with Caucasians. The

measurement errors of 5% (Hisp./Cauc. and Oth./Cauc.) and 6% (Af. A./Cauc.)

between our labeled data and the Census suggest that our results are overall reliable.

The inaccurate results for LA on the ZIP code level appear to have been caused by
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Hisp./Cauc. Af. A./Cauc. Oth./Cauc.
Granularity. LA NY LA NY LA NY

County 0.29 0.34 0.27 0.3 0.3 0.4
(-2%) (+2%) (+1%) (-2%) (-3%) (0%)

PUMA 0.32 0.39 0.43 0.42 0.31 0.49
(-6%) (+3%) (+4%) (+7%) (-10%) (+5%)

NTA - 0.54 - 0.43 - 0.55
- (+6%) - (+3%) - (+7%)

ZIP 0.36 0.56 0.33 0.55 0.58 0.5
(-19%) (0%) (-23%) (+1%) (-1%) (-7%)

∅ % Diff. 5% 6% 5%

Table 3.2: Interaction index (B) for different granularities based on labeled Instagram
data. Differences to the interaction index calculated from Census data are shown in
percentage points in parenthesis. For example, the probability of a Hispanic person
to interact with a Caucasian person on the PUMA granularity level for NY is 39%.
However, as shown in parenthesis, this result is an overestimation by three percentage
points over the Census distribution probability of 36%. The last row of the table
shows the mean difference between our labels and the Census for the three different
ethnicities in absolute percentage points for both LA and NY together. Note that
NTAs are not available for LA and that we also did not analyze the state level as the
label and Census distributions differ significantly (Figure 3.4).

Metro County PUMA NTA ZIP ∅ % Diff.

LA 0.01 (-2%) 0.15 (+8%) - 0.15 (+9%) 3%
NY 0.08 (0%) 0.14 (+1%) 0.08 (0%) 0.09 (+4%) 3%

Table 3.3: Entropy index (H) for different granularities based on labeled Instagram
data. Differences to the entropy index calculated from Census data are shown in
percentage points in parenthesis. As explained in Table 3.2, the last column shows
the measurement error. As further explained in Table 3.2, we did not consider NTA
(LA) and state granularities (LA and NY).

the smaller number of data points. While the level of interaction seems to increase

when areas become more fine-grained, this phenomenon seems to be caused by the

different area coverage for the various granularities. For example, it is not present

when considering all NY city areas, where the Census distributions for the interaction

of African Americans and Caucasians are: 0.41 (County), 0.25 (PUMA), 0.2 (NTA),

and 0.22 (ZIP).

With entropy index scores ranging from 0.01 to 0.15, as shown in Table 3.3, we

find another indicator for low segregation [48]. However, it should be noted that this
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low level of segregation is a characteristic of the particular areas we investigated. For

example, for all NY city areas at the NTA level we calculated an entropy of 0.31

indicating higher segregation. However, with mean differences of 5% (Hisp./Cauc.)

and 6% (Af. A./Cauc. and Hisp./Oth.) between the results for our labeled data and

the Census-based calculation our findings are generally reliable. As in the case of

interaction, we believe that any existing inaccuracies could be due to small numbers

of data points.

Mobility Segregation We evaluate mobility segregation based on the same mea-

sures as residential segregation—interaction and entropy indices. However, instead

of using home locations we leverage checkin data. More specifically, for each user we

calculate the percentage that he or she spent at a certain area and sum the resulting

values for all users of a certain ethnicity. This method aims to avoid overcounting of

active users. Our results are shown in Table 3.4 and indicate that segregation levels

in terms of where people go are similar to levels of where people live. Indeed, it

would have been surprising to see higher segregation levels as members of minority

groups may work in predominantly Caucasian areas. Furthermore, it would also have

been a surprise to see lower levels of segregation as residential segregation is already

relatively low.

Interaction Entropy

Metro Hisp./Cauc. Af. A./Cauc. Oth./Cauc. All Eth.

LA 0.55 0.57 0.58 0.06
(+1%) (0%) (-1%) (+1%)

NY 0.54 0.53 0.53 0.06
(-2%) (-1%) (-5%) (+2%)

∅ % Diff. 1% 1% 3% 1%

Table 3.4: Mobility interaction and entropy indices for ZIP code granularity based on
labeled Instagram checkin data. Differences to the residential interaction and entropy
indices calculated from Census data are shown in percentage points in parenthesis.
The last row of the table shows the mean difference between our labels and the Census
in absolute percentage points for both LA and NY together.
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3.5 Inferences from Mobility Data

We now show how location data by itself allows to infer ethnicity and gender of

individual Internet users. We introduce a simple frequentist approach (§3.5), de-

scribe considerations informing our methodology (§3.5), and present the results of its

application (§3.5).

Important Baseline
Task Parameters Features Accuracy Accuracy AUC F1

Ethnicity NY L1, C = 0.01 Avg. ZIP ethnicities 0.52 0.72 0.76 0.74
Ethnicity LA L1, C = 1 Avg. ZIP ethnicities 0.50 0.63 0.66 0.64
Gender NY L2, C = 0.1 Men’s Store 0.53 0.58 0.59 0.55

Table 3.5: Results for the binary classifications of ethnicity and gender in NY and
LA. The algorithms ran on all available features, such as counts of visits to different
neighborhoods, the ethnicity of the most visited block, and the categories of nearby
Foursquare venues. Logistic Regression was the best algorithm for all problems. The
baseline was obtained by predicting the class of a user based on the label distribution.

A Simple Inference Algorithm

Our approach yields two advantages: (1) it provides a formulation of the problem

that is intuitive and (2) it remains generic so as to be easily applicable to any sparse

location dataset. We use the following assumptions: each user, i, belongs to one of

two classes, C1 or C2. Class C1 (respectively C2) is associated with a probability

distribution µ1 (respectively µ2) over a discrete set of locations, representing the

fraction of time spent by users of that class in that location. Our main assumption

is that a user i makes n checkins, denoted X(i) = (X
(i)
1 , . . . , X

(i)
n ) at locations that

are drawn independently from this user’s class probability distribution. The prior

probability that a user is in class C1 or C2 is denoted π1 and π2, respectively.

Note that this model does not use notions of times of the day, geographies, or

auxiliary information. It applies to most location datasets as it is agnostic to how

they were generated, anonymized, or in which granularity they are available. Such
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model serves as a starting point to approximate human mobility [38]. However, in

practice humans show periodicity [36] or even social bias [18] in their movements,

and users in a class may not be identically distributed, which is why it is important

to test our technique using real data (§3.5). Under our assumptions, the problem of

classifying users in their respective class reduces to a simple hypothesis testing. If i

is in class C1 then for any location l, we have

∀j, P (X
(i)
j = l|i ∈ C1) = µ(1)(l), (3.5)

so that

P (X(i) = (l1, . . . , ln)|i ∈ C1) = µ(1)(l1) . . . µ
(1)(ln), (3.6)

by independence, and applying Bayes’ rule

P (i ∈ C1|X(i) = (l1, . . . , ln)) = 1

1+
π2µ

(2)(l1)...µ
(2)(ln)

π1µ
(1)(l1)...µ

(1)(ln)

. (3.7)

The Neyman-Pearson lemma states under the assumptions above that the most

powerful statistical test to determine which class a user belongs to from its checkins

is the likelihood ratio test. A maximum likelihood rule classifies a user in class 1 iff

π2µ
(2)(l1) . . . µ

(2)(ln) < π1µ
(1)(l1) . . . µ

(1)(ln) (3.8)

or, equivalently, if we have

n∑
k=1

ln
µ(1)(lk)

µ(2)(lk)
> ln

π2
π1

. (3.9)

We expect that our predictions are more accurate on users with more checkins.

One can show under these assumptions that this classifier’s error probability for a

user decreases exponentially as the number of checkins n grows, that is,

P (error|n checkins) ≈n→∞ 2−nC(µ1,µ2), (3.10)

where µ1 and µ2 are the probability distributions associated with C1 and

C2, and C denotes the Chernoff information, defined as C(µ1, µ2) =

−min0≤λ≤1 ln
∑

l µ1(l)
1−λµ2(l)

λ .
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Based on this analysis, a simple algorithm to infer ethnicity or gender can first

estimate µ1, µ2 and π1, π2 using the training data and then classify according to this

likelihood rule.

Methodology

Our purpose is to explore generally what might be inferred about users from their

location data only. This affected our methodology in a few key ways. First, we

utilized well-understood, commonly-applied techniques that could easily be employed

by anyone with access to mobility data. We also used publicly available data-sources.

Second, to make our results applicable to other sources of location data beyond

Instagram, we did not use features specific to Instagram, such as the social network

graph or user-generated descriptions. Thus, our work should be viewed as a lower-

bound on the accuracy of what can be inferred using location data. Adversaries with

access to more detailed auxiliary information, more data about each user (such as

a contact list or recent purchases), or more advanced machine learning techniques

might achieve better results.

We considered two questions: (1) Can minorities be distinguished from Cau-

casians? (2) Can women be distinguished from men? We represented users as feature

vectors, using three classes of features: geographic features, such as counts or per-

centages of visits to locations; semantic features derived from Foursquare, such as

the popularity of visited venues or counts of visits to venues with certain categories

like “Restaurant” or “Park” (the collection of which we explained in §3.3); and Cen-

sus derived features, such as the average ethnic makeup of all visited locations or the

ethnic makeup of a user’s most-visited location.

We performed all our experiments using the scikit-learn library [95] and tested

the algorithms logistic regression, decision trees, naive Bayes, and support vector

machines (SVMs). As a baseline, we predicted ethnicity or gender based on the
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class distribution, giving us baseline accuracies of 52% for ethnicity in NY, 50% for

ethnicity in LA, and 53% for gender in NY.

Auxiliary Data Auxiliary information about a location derived from Foursquare

or the Census may not always be available, e.g., in countries without publicly available

census data or when locations are anonymized. Furthermore, a labeled training set of

user data may not always be available either. To understand the performance of an

algorithm that does not have access to any data beyond counts of visits to locations,

we applied our Bayesian algorithm to our data. To test if labeled data was necessary

to guess ethnicity, we developed a simple decision rule that used no labels. Based on

Census data we calculated the average percentage of Caucasians living in all locations

that a user visited. If this percentage was over the metropolitan area’s average, we

predicted that the user was Caucasian. If it was below, we predicted that the user was

of a minority ethnicity. We called this the Unsupervised Threshold algorithm. We

compared this algorithm to an algorithm with access to labeled data, which learned an

optimal threshold rather than using one derived from publicly available Census data

and which we dubbed the Supervised Threshold algorithm. Finally, we compared

these algorithms against our best performing algorithm, run with all features at the

lowest granularity. We call this the Full algorithm.

Data Granularity The granularity of location data can vary greatly depending on

how it is created. Previous research has investigated the impact of location granularity

on anonymity [84, 132]. To investigate the impact of granularity on inferences, we

represented our location data at several different granularities defined by the Census

ranging from block groups to states. The ethnic makeup of a large granularity area,

such as a county, will typically be more similar to the overall metropolitan area’s

ethnic makeup than a small granularity area like a city block. Thus, increasing the

granularity should make inferences more difficult.
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Data Quantity Finally, with four different analyses, we studied the impact of

data quantity on prediction accuracy. First, to explore the impact of user activity

on inference accuracy, we grouped users according to their number of geolocated

Instagram photos. Next, we investigated the impact of location diversity by grouping

users according to the number of distinct ZIP codes they visited. Both of these are

impacted by choices made by users—users who post more might be inherently easier

to identify or predict. We thus did two more analyses where we sampled locations

from a user’s full set of checkins. In the first, we ran the Supervised Threshold

algorithm on a user’s k most visited locations. In the second, we ran the Supervised

Threshold algorithm on n randomly sampled checkins.

Results

The results of our best-performing algorithms are displayed in Table 3.5, and a de-

tailed comparison of accuracy as a function of granularity can be seen in Figure 3.8.

Our results suggest that geotag data can be used to infer an individual’s ethnicity

and gender. The accuracy for predicting ethnicity falls squarely within what has been

reported for other types of datasets. On the lower bound, in their work of predicting

individual Twitter users as African American or not based on linguistic features of

Tweets [98] report as best performance an F-1 score of 0.66. On the upper bound, for

predicting whether the ethnic origin of a phone user is inside or outside the United

States based on a rich feature set containing Internet usage, call, text message, and

location features [2] achieved an F-measure of 0.81 and for gender an F-measure

of 0.61. For gender [137] achieved an F-measure of 0.81 for social network users in

Beijing and 0.82 for Shanghai based on spatial, temporal, and location context knowl-

edge. Given that our dataset contains far fewer features our results demonstrate that

geotags are surprisingly powerful in predicting gender and ethnicity.
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Auxiliary Data It can be observed in Figure 3.8 that the Supervised Threshold

algorithm performs much better than the Unsupervised Threshold algorithm suggest-

ing that labeled data improves the algorithmic accuracy across the board by roughly

5%. Interestingly, the Bayesian algorithm performs comparably to the Supervised

Threshold algorithm. Thus, an algorithm with no semantic information about vis-

ited locations performs just as well as one that knows the ethnic makeup of all visited

locations. This suggests that an adversary with enough location data labeled with

demographic data could obtain reasonable levels of accuracy with no knowledge of

what locations were visited. Even if locations are “anonymized,” that is, GPS coor-

dinates or venue names were obscured, they can still be used to infer demographic

information about the user.

Data Granularity The Full algorithm (that is, our best performing algorithm,

with access to all features at all levels of granularity) achieves the best performance;

no algorithm with access to restricted, coarser-grained features is as accurate.

The performance of all algorithms decreases at the most coarse granularities.

This is most likely because the ethnicity distributions of larger regions are closer

to the overall distribution of the metropolitan area and provide less information.

Several algorithms improve in performance at medium granularities, such as ZIP and

neighborhood. This is most likely caused by the sparsity of our dataset at the most

detailed granularity as many blocks are only visited by a few users.

Data Quantity It appears that the accuracy of ethnicity prediction improves with

the total number of checkins a user has made as shown in Figure 3.9. The distinct

number of ZIP checkins of a user provides a separate measure of user activity as

a user could have a large fraction of checkins in few ZIP codes. We can observe a

substantial boost in accuracy after a user checked in at 12 distinct ZIP codes.
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We also found that when a user is only observed in a limited set of locations, the

inference accuracy increases fast with a relatively small increase in the number of

locations. Moreover, it is not even required to focus on the most significant locations

of a user to get good inference accuracy. Observations of a user in a few random

locations at the tract or neighborhood level might be enough for predicting ethnicity,

and those locations may be even selected randomly and must not be necessarily

related to the user’s most significant places. These results, which are displayed in

Figure 3.10, suggest that inference for the purpose of ethnicity identification is quite

robust to data sparseness and obfuscation methods.

3.6 Conclusion

This study highlights the risks and opportunities of discriminative big data analysis

by demonstrating that it is possible to infer Internet users’ ethnicities and genders

based on location data alone. It also shows that mobility patterns can be studied

using publicly available data. Internet users may often be unaware that releasing

such data could also disclose possibly sensitive personal information. Simply reduc-

ing granularity proved to be insufficient to prevent such privacy leakage as mobility

remains discriminative. However, the trove of geotagged pictures available through

individual online profiles also yields important insights for beneficial uses, for exam-

ple, by city planners and social scientists.

As our dataset is similar, both demographically and mobility-wise, to other

datasets as shown in §3.4, we believe that our results are generalizable and appli-

cable to other unlabeled datasets. Although it could be claimed that our data is

biased by the fact that the users in our study have willingly disclosed their gender

and ethnicity by publicly using Instagram, we want to stress that it would be difficult

and possibly unethical to create a labeled dataset of users who do not want to disclose
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their gender and ethnicity.

This work motivates multiple avenues of further research: First, it enables the

extension of demographic mobility analysis to many researchers using shareable public

datasets and reproducible results. Beyond ethnicity and gender, attributes such as

age, occupation, and other lifestyle features may be extracted from users’ pictures,

and naturally there are many other mobility properties to account for beyond, for

example, daily ranges. Second, better understanding the discriminative power of

location data might inform the design of tools for raising user awareness about the

information they reveal. This insight motivates revisiting mobility modeling and the

inferences it renders possible to empower users to make at will their locations as clear

as a photograph or as opaque as footprints in the mud.
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Start/Stop

gender: female (86% acc.)
avg. income: [$40k-80k]

ethnicity: hispanic (65% acc.)
bmi: [20-22]

children: yes (89% acc.)

(1) CRAWL

(4) INFERENCE

(2) 
LABELS

(3) AUX.
INFO

gender: male
age: 20-30

interest: beer, music
ethnicity: caucasian

home zip:91302
zip avg home loan: $1m
4sq keywords: expensive
most visited venue: club

Pictures Places

PRIVATE
PUBLIC

lat, long, t
l1,l1,t1
l2,l2,t2

...

Instagram; User hash#12345 ; Public

Figure 3.1: Methodology overview. A mobility dataset can be built in the follow-
ing steps: (1) Public user profiles of a photosharing service are crawled and photo
metadata are extracted into a database (Data Collection). (2) Corresponding photos
are labeled (with labels for ethnicity, gender, etc.) by crowd workers in an online la-
bor marketplace (User Labeling). (3) The dataset is further enhanced with auxiliary
data, e.g., with the information that a certain location is close to a restaurant (Adding
Auxiliary Information). (4) The dataset can then be used to analyze attributes on
various demographic levels or train and test classifiers for individual inferences.
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Figure 3.2: Annotations for LA and NY. Top: percentages of user labels for the differ-
ent categories. Bottom: absolute numbers of labeled users and annotation agreement
results.
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Max. Mo.–Fr. Med. Mo.–Fr. Med. Night
% LA NY LA NY LA NY

98 2,471.7 3,625.6 133 209.9 117.4 129.9
(2,467) (2,455) (32) (29) (23.1) (19.4)

75 47.5 37 9.3 5.3 6.1 3.3
(130) (111) (10) (8.2) (8) (5.6)

50 12.8 8.1 4 2.2 1.6 1
(36) (27) (5) (3.8) (4) (2.6)

25 3 2.3 0.8 0.5 0.1 0.1
(17) (12) (2) (1.3) (1.4) (0.7)

02 ε ε ε ε ε ε
(1.6) (1.3) (0) (0) (0) (0)

Figure 3.3: Daily ranges in miles. Top: boxes show the 25th, 50th, and 75th per-
centiles; whiskers the 2nd and 98th percentiles. Bottom: table with the percentiles
represented in the boxplots. The maximum range (Max. Mo.–Fr.) is a user’s longest
distance and the median range (Med. Mo.–Fr.) a user’s median distance, each taken
on a single day for the entire Spring subset on a weekday [49]. The median range at
night (Med. Night) represents the median distance a user has traveled on a day for
the entire combined Spring and Fall subset from 7pm–7am [51]. Previous results [51,
49] are shown in parentheses. Our calculations do not consider any day where a
user had a zero range, that is, had multiple checkins at the same location or a single
checkin only. We define ε < 0.005 miles.
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Ethnicity Multi-Cat. Ethnicity Binary Gender
Gran. LA NY LA NY NY

State 0/1 0/1 1/1 0/1 1/1
(0%) (0%) (100%) (0%) (100%)

County 1/2 8/11 2/2 6/8 4/4
(50%) (73%) (100%) (75%) (100%)

PUMA 12/16 11/17 2/2 5/6 1/1
(75%) (65%) (100%) (83%) (100%)

NTA - 9/16 - 7/7 2/2
- (56%) - (100%) (100%)

ZIP 3/3 8/14 1/1 3/3 -
(100%) (57%) (100%) (100%) -

Figure 3.4: Chi square goodness of fit test results for ethnicity and gender at various
levels of Census-defined granularity. Top: detailed view of the multi-category eth-
nicity distributions for the NY county level. Left bars show the Census distributions
(Cen.) and right bars the label distributions (Label). Bottom: complete results of
the chi square tests. NTAs are specific to NY and not available for LA. Below the
ZIP code and NTA levels we did not have enough data to perform chi square tests.
We follow [107] and require the average expected frequency for a chi square test with
more than one degree of freedom to be at least two and for a test with one degree of
freedom to be at least 7.5. To prevent skewing due to small sample sizes we also use
a Monte Carlo simulation with 2,000 replicates.
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% Hisp. Cauc. Af. A. Oth. Fem. Male

98 2,480.8 6,509.4 2,270.9 6,788.1 9.8 11.5
75 50.8 592.3 44 187 3.2 4.7
50 13.5 52.1 11.9 18.4 1.8 1.9
25 4.9 7 5.5 3.7 0.4 0.6
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Figure 3.5: Daily ranges in miles. Top: density plot of the maximum daily ranges
by ethnicity. Middle: density plot of the median daily ranges at night by gender.
Bottom: table with the percentiles of the daily ranges represented in the plots. We
rounded extremely small daily ranges up to 0.005 miles. Our calculations do not
consider any day where a user had a zero range, that is, had multiple checkins at the
same location or a single checkin only. We define ε < 0.005 miles.
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Figure 3.6: CCDFs of home ranges for NY. Top: CCDFs for different ethnic groups.
Bottom: CCDFs for males and females.
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Figure 3.7: Histograms of checkin times for NY. Left: Comparison of weekends and
weekdays for all user groups. Right: Comparison of Caucasian and minority user
groups for weekends and weekdays. Dashed lines correspond to weekends, solid lines
to weekdays.
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Figure 3.8: Accuracy of ethnicity prediction versus granularity for our NY population
using several different inference techniques. Accuracy increases slightly at the ZIP
code and neighborhood granularities and then decreases. Interestingly, the Bayesian
algorithm, which uses only counts of visits to locations, performs comparably to the
Supervised Threshold algorithm, which uses data on the ethnicity of visited locations.
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Figure 3.9: Checkin user activity. Left: accuracy as a function of total number of
checkins at ZIP code locations. Right: accuracy as a function of number of checkins
at distinct ZIP code locations.
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Figure 3.10: Accuracy of predicting a user’s ethnicity from a small number of locations
chosen either as most frequently visited locations or randomly. The algorithm used
is the Supervised Threshold algorithm. Left: tract granularity. Right: neighborhood
granularity.
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Chapter 4

Transparency in Location-Data Systems

In this chapter, we present FindYou, a web-based application that gives users the

ability to perform a location data privacy audit. FindYou lets users import and

visualize the location data collected by popular web services in order to understand

what these companies know or can easily infer about them. Additionally, FindYou

gives users the option to donate their data to the scientific community, creating

new mobile datasets linked to user properties that will be open to use by academic

institutions.

What is the purpose behind FindYou? In the previous chapter, we described a

method to improve user privacy while still allowing the monetization of user location

data. The solution was implemented at the system level in order to protect the pri-

vacy of individuals. However, system level implementations require data aggregators

to change their behaviors, and here we focus on a tool that individuals can use. Ad-

ditionally, as we showed in Chapter 2, the large scale collection and use of location

data also creates concerns about bias at a group level as opposed to only attacks

on individuals. As concerns of algorithmic bias have grown, the research community

has focused on a method to both understand what data aggregators are doing and

explain these methodologies to average users. The work in this chapter is in that vein

of accountability and transparency research.
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4.1 Motivation and Summary of Results

As stated throughout this thesis, the overall economic model of network-related ser-

vices is that users receive free services and software from online providers. In return,

the providers obtain revenue by displaying ads to users. Typically, providers only are

paid when ads are clicked, or for showing ads to users within specific demographic

groups that advertisers wish to target. Thus, providers have a strong incentive to

deeply understand users, in order to show them the best ads or to prove to advertis-

ers what demographic groups are seeing ads. This can create a problem when users

are not fully informed about what data is being collected about them, what this

data is being used for, or with whom this data is being shared. This issue has been

exacerbated by the rise of smartphones– mobile technology has both made digital

interactions constantly available, while also functioning as remote sensors, collecting

detailed information on users’ real-world movements and behaviors. One important

subset of this data is location data, which details where a user was at a specific time.

Users are often incentivized to share their location data, for example, with an on-

line service to find recommendations for nearby businesses, most often with their cell

phone, but also on other devices through IP-geolocation or different methods.

Online service providers can use the data for personalization, such as guessing

what language the user will want to see or tailoring content to specific users. How-

ever, this data can also be used in ways that users may not be comfortable with.

For example, location data can be used to infer a user’s race, gender, or uniquely

identify them from anonymous data sets [137, 103, 132]. Journalists have even found

evidence that location data has been used in price discrimination. In one example, a

newspaper found evidence to suggest that the a company was changing the prices of

products purchased online based on the inferred distance of a customer to a compet-

ing store [121]. In another, Mac users were shown more expensive hotels on a travel

website [76].
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In response to some of the problems with the overall economic state of the web,

the community has created tools to detect and measure online personalization and

ad-targeting [63, 127]. These tools, though very useful, are often not designed to

inform non-technical users of the problems inherent in personalization.

In this chapter, we focus privacy understanding tools on location data to create

a personal location data auditing tool. This tool allows users to (1) enter or import

personal location data gathered by three popular online services, (2) visualize this

data, (3) view the demographics of their visited location in terms of race, income,

age, and family make-up, and finally (4) receive a prediction of their demographics

based on this data. We design this tool with the goal that it will be approachable and

informative for all users, especially those without deep technical knowledge. Another

key part of this tool is to improve future research on demographics and mobility by

allowing users to donate their data.

In the following sections, I will describe some background, the overall goals of the

project, and the principles focused on while designing it. The work in this chapter

was presented as a demo at the World Wide Web conference in 2016 [105] and was

completed with Danny Echickson, Stephanie Huang, and Augustin Chaintreau.

4.2 Background

This work in this chapter lies at the intersection of two areas: location privacy and

computational “auditing” tools.

Location privacy is a rich field that explores privacy problems created in the

use of user location data and potential solutions. Previous works have shown that

location data can be used to infer sensitive traits of individuals [137, 103]. Other

works have explored how users understand and value their location privacy [112]. In

constrast to these works, we do not utilize user data as an object of study, or seek
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to understand user perceptions of location privacy. Rather, we wish to inform users

about their location data and potential privacy hazards by providing the user with a

visualization of their already collected data, along with what this data might suggest

to a third party.

Another related collection of work is that on systems for understanding how on-

line personalization takes place. These works have attempted to measure personal-

ization [44, 127], price discrimination [78, 121, 76], and ad targeting [70, 63, 125]. We

are closely related in that our work is concerned with these issues. However, rather

than attempt to detect these problems, FindYou functions as a tool to make users

aware of the existence of these issues.

There are multiple sources for capturing and visualizing your data online [37, 86].

Our work goes beyond visualization by also showing predictions informing users of

what their data could be used for. Additionally, there are other projects where users

can donate their data to science [34]. Our project focuses on a specific subset of this

larger goal, but offers a type of data that is not publicly widely available.

4.3 Description

FindYou has two main goals: The first goal of our project is to inform users, regardless

of technical skill, about what their location information can reveal. The second goal

is to improve research on demographics and mobility by gathering a new dataset with

the informed consent of interested users.

We will begin with a summary of a typical use of FindYou, and proceed to explain

each component in more detail, along with the decision-making that influenced the

design.
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Figure 4.1: The user is presented with four different ways of connecting his or her
location data to the app.

Figure 4.2: After connecting their data, the user sees an overview of their locations
and imported data.

Site Summary

When opening the site, the user is greeted with a general description of the project.

After clicking through this screen, the user has the option to import their data from

three different web services or to manually import data by clicking visited locations

on a map. Upon importing their data, users see the distribution of their visited

locations of several different demographic traits, including race, income, age group,

and parental status. Finally, at the bottom of the page, users have the ability to

donate their data for further research.
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Figure 4.3: We show a specific guess for the user’s home location.

Figure 4.4: For all predictions, we show additional details about how we made this
guess.

Design Decisions

Why did we choose these sites? FindYou is currently able to import data from three

popular online services or manually, by a user clicking on visited points on a map.

The three sites we chose are Instagram, Twitter, and Foursquare. These sites were

chosen because they are all popular but also present a diversity of behaviors and

different levels of focus on location. We will discuss each of these sites in turn.

Foursquare is a location-based social network and review site. Users write re-

views of and give tips about locations they have visited. It is estimated to have 50

million users. Foursquare is the most “location-centric” of our utilized web-services,

as users must reveal their location to obtain any value from the service.
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Figure 4.5: The site predicts several demographic attributes, one of which is race.
The user has the option to tell us if we are correct.

Instagram is a photo-sharing application owned by Facebook with 400 million

monthly active users. Instagram is notable for it being primarily targeted at mobile

phones; currently users cannot upload photos from a desktop or laptop computer.

The mobile focus makes it is easy for users to “tag” photos with locations using their

phone’s GPS device. Although many users do tag their photos with location data,

unlike Foursquare, it is not necessary to post a location in order to use the app. Due

to the fact that many users do tag their photos with locations, it is the second-most

“location-centric” of our three services.

Twitter is a microblogging service where users post 140 character texts called

“tweets”. Twitter has approximately 320 million users. Through its smartphone

interface, Twitter users can tag tweets with locations. Many users connect their

Twitter account to other web services, such as Foursquare and Instagram, among

others, which may also contain location data. The primary focus of most tweets is

not about where a user currently is. Therefore, Twitter is the least location-centric.

We additionally included an option for manual input. This option simply has

users click on a map to say where they’ve been. We included this option and used

this design for several reasons. First, we wanted users who do not use any of the three

aforementioned services to be able to participate in a location information privacy
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audit. Additionally, allowing users to manually input data gives the ability for users

to play with hypothetical trips or to input locations that were not tagged in the

services. We used this design because it is easy and simple.

In the future, we hope to connect more services and also include more advanced

location-data uploading. For example, users could include data in standard geo-

graphic formats, such as GeoJSON or those used by GIS software. For the time

being, we believe that our three chosen services and simple uploading methodology

will provide users with an interesting and useful coverage of options.

Why did we choose to display these demographic features? After a user has im-

ported at least some of their location data, we display demographic information on

the places they visited. The features we chose to show are race, income level, age,

and family make-up (number of households with children). The user sees a pie chart

showing the average (over the user’s visited locations) categorical distribution for that

demographic trait. The site additionally displays specific details about each category

for the user’s most visited location. Technically, this works by utilizing information

from the United States Census. On our server, we store information on the bound-

aries of each U.S. Census tract. We additionally have information on the make-up of

each Census tract for our selected traits. We chose these features to be interesting,

surprising, and possible to infer using location data. Hopefully, FindYou can include

additional interesting demographic features in the future.

Why did we use only simple machine learning techniques? In addition to descrip-

tive data about the distribution of visits in each category, we also present predictions

of which category a user falls into for each demographic attribute. Although users

may be interested about the demographics of the locations they visit, they might not

realize that this information can be used to infer their own traits. Therefore, showing

predictions is useful in and of itself, even if the predictions aren’t all accurate, as it

shows users that their data can be used in such inferences. Driven by our goal of
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simplicity in explaining what’s going on to the user, we use simple techniques that

are intuitive for most users, as opposed to using more difficult to understand methods

like SVMs or neural networks. For each demographic trait, we predict the user to be

in the class to which they have the most visits. To make this concrete, consider the

example of age. We break age into several categories. We average the distribution of

age categories of all the locations a user has visited, and pick the category with the

largest proportion.

How did you choose to represent locations? There are many different ways to

represent locations, such as latitude longitudes, venues, cities, or points of inter-

est. Throughout this chapter and the site, we use a United States Census tract as

an “atomic” location. The United States Census partitions the country into census

tracts, which are stable geographic boundaries chosen to contain homogeneous pop-

ulations. Census tracts are typically the size of a few city blocks and might contain

4000 or fewer people. We chose to represent all locations as a census tract for several

reasons. First, we can map any latitude longitude point into a census tract, and

thus any venue with an associated lat-lon into a tract as well. Census tracts are

small enough to be targeted, but large enough to display without overwhelming the

user. Finally, they are all associated with detailed demographic information from the

Census.

Throughout the site, whenever a census tract is mentioned, the user can click on

it to see its geographic bounadires and demographic make-up.

Why only America? Due to our reliance on U.S. Census data, our site currently

only bases it’s predictions on visits to locations in the United States. We hope to

expand to other countries in the future. This presents some challenge, as each census

of each country will have different types of data available, different classifications,

groupings, and currencies, and different APIs. We look forward to tackling this

challenge in future work. For the time being, focusing on the world’s third most

86



populous country with one standardized census and many online social network users

has appeared to be a good option.

4.4 Future Work

(a) (b)

Figure 4.6: (a) Donut graph displaying

distribution of income groups visited by

user, and (b) map showing tracts visited

by user along with income information on

each tract.

Our most important future task is to ob-

tain widespread usage and determine the

most useful features of the site. FindYou

is currently public and live. By showing it

to more users, we hope that we can obtain

valuable feedback and to rapidly iterate

to present an engaging and informative

perspective on the gathering of location

data. One possibility is to run random-

ized controlled trials with FindYou and

assessing its effect on attitudes or aware-

ness of privacy issues.

Multiple improvements can be made

to the site. We would like to offer more support in diverse geographic regions outside

of the United States. Additionally, we could expand to other popular services or to

more advanced forms of data uploading such as GeoJSON or text files of latitude-

longitude pairs. Another possible improvement would be to expand the number of

demographic traits on which we classify, or to use more advanced classifiers.

We look forward to sharing any data that we obtain with the research community

in a way that both protects the data of donating individuals as well as making it easy

for members of the research community to make new discoveries.
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4.5 Conclusion

We have presented the motivation, design, and implementation of FindYou, a personal

location privacy auditing tool. FindYou displays to the user their location data that

has been collected by popular online services. Additionally, FindYou informs the

user on the demographic make-up of the areas that they have visited, and shows

how this data can be used to infer traits about the user. In addition to these web

services, FindYou allows users to manually edit their location data to see the impact

of adding and removing locations on these predicted traits. FindYou allows users to

donate their data, with the hope that eventually the research community will have a

useful set of user location histories tagged with demographic information. The site is

currently live at https://find-you.heroku.com.
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Chapter 5

User Choice in Location Disclosure

In the first two chapters, we showed that location data is difficult to truly anonymize

and can additionally reveal the demographics of users. What is a privacy-conscious

user to do? In this chapter, we begin to present solutions to this conundrum.

5.1 Motivation and Summary of Results

As discussed in the introduction, many of the privacy concerns around location in-

formation are rooted in how the mobile application ecosystem works. Most mobile

services and applications are free and operate by collecting various types of personal

information about the user (browsing activity, location etc.) and monetizing this

information through targeted ads [64]. Many web services and applications access

location information even when such information is not needed, and may share it

with multiple third parties, leading to privacy concerns [28, 122] and attracting the

attention of regulators [31, 1, 118]. Location-based adveriting, however, is often quite

effective: location-based targeting can garner four times as much revenue per impres-

sion compared to ads without location data1, and even brick-and-mortar stores are

interested in location data, with retailers using cell phones’ WiFi signals to learn

about where customers spent time in their stores2. This is why, when privacy ad-

vocates request stricter rules to be enforced on information collection, they typically

are opposed by companies providing these services. Apps and service providers claim

1http://bit.ly/vXWdsw

2http://nyti.ms/15vLRva
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that the “cost” of a privacy bill threaten the web’s general economy and, ultimately,

hurts customers. An ideal privacy solution, therefore would provide adequate privacy

protection to the user and at the same time enable the service providers to collect

and monetize data.

In this chapter, I describe a system that gives users control over their information,

does not degrade the data given to aggregators, and preserves revenues. Recognizing

that the first challenge is to express locations in a way that is meaningful for adver-

tisers and users, I propose a keyword based design. Keywords characterize locations,

let the users inform the system about their sensitivity to disclosure, and build infor-

mation directly usable by an advertiser’s targeting campaign. This chapter has three

contributions: the design of a market of location information and discussion of its

robustness; an analysis of the economic consequences of the system using data from

ad-networks, geo-located services, and cell networks; and a small scale experiment

of the system to collect preliminary results on the behavior of real users if location

information markets were deployed.

The objective of this chapter is to lay the groundwork for a comprehensive and

deployable solution to location privacy. In contrast to previous works, we aim at

reconciling the control users exert over their data with its commercial value. This

raises three main challenges. The solution should be incrementally deployable: it must

easily integrate with current devices and practice, while giving all parties an incentive

to participate. The solution should be robust against threats from its participants.

Advertisers wishing to access data without compensating users, or access more than

the users specify, should be stopped. Users should not be able to significantly benefit

from seeking unfair compensation. The solution should be easy to use: users and

advertisers have to express their needs in intuitive terms.

Our solution is based on selective disclosure; users decide which location informa-

tion they want to disclose. At the heart of our solution is a keyword-based method
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where keywords are associated with locations, and the decision to release locations is

based on keywords. We observe that keywords are naturally associated with the ele-

ments that define this problem, but also offer a strong abstraction to handle location

data (more in Sec. 5.2). In order to drive the adoption of the solution, I propose to in-

clude economic compensation to the users for the location information they disclose.

Application and web service providers bid to gain access to users at these specific

locations, in real-time.

The main contributions are:

• The design of a keyword-based system that integrates well into today’s location

collection and monetization. Our solution requires no change on users’ devices,

a minimum level of indirection, and addresses goals like usability, deployability

and scaling (Sec. 5.2).

• An analysis of how such a system can offer different levels of protection against

various threats, including free riding, inference attack using auxiliary informa-

tion, and user misconduct (Sec. 5.3).

• An evaluation of a deployment within the economy of mobile advertising. We

use data gathered from cell phone users, geo-located services, ad-networks, and

a simple revenue model. We found multiple privacy-value trade-off that benefit

users and advertisers. We find that if information is removed about most privacy

sensitive locations, revenue drops by around 20% (Sec. 5.4)

• A test of our solution’s usability and relevance with a small scale trial on real

users. While this experiment is too small to form statistically significant con-

clusions, it allowed us to test the feasibility of our design (Sec. 5.5).

Much of this chapter appeared as a paper at the Workshop on Privacy in the

Electronic Society in 2013 [102]. The work was conducted with Augustin Chaintreau,

Vijay Erramilli, and Jacob Cahan.
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5.2 Overview

In this section, we discuss our assumptions, provide a description of the design, give

a simple example to explain how our solution works, enumerate the advantages of the

system, and describe the data we used to analyze the solution.

Requirements and Assumptions

To meet our requirements, we create a solution based around selective disclosure;

users disclose location information that they are willing to release, and this informa-

tion can be monetized by ad-networks and third party aggregators by way of online

ads. The control, therefore is with the user. Any privacy solution based around

selective disclosure (Koi [42] etc.) needs to address how the information is released,

under which conditions the information is released and to whom.

In order to answer how we release location information, we design our solution

around keywords associated with locations; the decision to release is based on key-

words associated with locations, while the information that is actually released is

the location. A simple example would be a street that has many restaurants serv-

ing different cuisines, it would have keywords like “restaurant, Thai, French, Indian”

associated each with the latitude longitude pair (lat-long) of each particular venues.

This association has several advantages: (i) Keywords let us deal with the problem of

location privacy at a higher abstraction than coordinates or even location descriptors

(as Koi [42] does). (ii) Keywords are user friendly– instead of having to decide the

sensitivity of every location, users decide on a much smaller set of keywords that they

are comfortable releasing or not. (iii) Today’s ad-networks function primarily around

keywords, thereby a solution around keywords can make it easier for ad-networks to

adopt and use. (iv) As there can be a finite set of keywords associated with any

location, and the association of a keyword with a location typically remains for long
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periods of times, modifying keywords associated with a location is easy, making the

solution scalable.

In order to answer under which conditions we release, users opt-in and disclose

location information of their own choice3, and they get compensated economically

for this release by aggregators and ad-networks. This agreement is facilitated by

a trusted third party who provides access to the user at only those locations the

user releases, upon payment. We use economic compensation for multiple reasons.

In general, concerns around privacy alone have not helped in large scale adoption of

privacy solutions; past research has shown that most users fall prey to cognitive biases

while thinking about privacy solutions [10]. We hope economic incentives can nudge

more users towards adoption. Introducing an economic dimension to the disclosure

problem also addresses the issue of to whom the information will be released to –

parties that can pay. In addition, the trusted third party in the middle can vet the

parties.

Before describing the design, we first describe our assumptions. We consider

our adversary to be an honest-but-curious advertiser. This means our adversary

participates in the system honestly but may try to exploit the information that is

gathered. With this in mind, we provide safeguards against inference and linkage

attacks.

We assume that once an entity enters into an agreement with the user, it is gener-

ally compliant. Given the amount of press on privacy related issues, we believe that

the PR backlash in the case of a serious privacy violation will make such violations

undesirable. We assume that location information can be tracked and gathered con-

tinuously, as this is the worst case. In general this is not feasible as energy concerns

around GPS usage will forbid this [68]. We note that the architecture presented next

is oblivious to a background service model (passive, potentially continuous tracking)

3Users are comfortable disclosing location information under certain circumstances [54]
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Figure 5.1: Solution overview

or a check-in model. We also assume that modern mobile OSes truly implement users’

privacy preferences. If a user decides to not share location information with a certain

application, then this request would be enforced.

Design and Example

The architecture consists of the following components: (i) a blocking module in the

network that blocks access to various parties, (ii) a blacklist module that contains a

list of sensitive keywords and maps these keywords to physical locations – these are

locations that will not be revealed, (iii) a market that puts up location information,

for locations visited by the user that are not in the blacklist, (iv) an module that

grants access to the user for parties that pay, after having come to the market and
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used the released location information to valuate the user. All these modules are

stored in the network; no changes are required on the device.

The high-level diagram is shown in Fig. 5.1. We describe the process by using a

simple example. User Alice is willing to share certain locations, and would like to

hide her presence at other locations, a typical occurrence [54]. Alice would like to

buy some bread to go with dinner, shop for wine and then head to the Libertarian

party headquarters in her town to volunteer for the upcoming elections. She would

like to conceal the fact that she is an active volunteer as it would disclose her polit-

ical leanings. Alice, would therefore put ‘Libertarian, Politics’ as some keywords in

her blacklist. We describe in Sec. 5.5 how the blacklist formation can be simplified

through nested menus and re-ordering. This blacklist will be stored on a server at

a third party location. We assume the third party is trusted and leave lowering this

requirement to future work.

As Alice walks to her locations, all her network activity goes through the blocking

module that runs a mix-network to conceal her real network address, and provides

privacy protection like dropping cookies to third parties, overwriting referer headers

etc. [59] (see Sec. 5.5 for more on implementation). At every location, a check is made

against the blacklist to verify if Alice is comfortable releasing this information. In

order to perform this check, we need to translate the keywords to locations, described

in Sec. 5.2. Once a location passes the check, as in this case, it is put on the market for

sale, with a unique user-id and the keywords. This user-id is generated independently

and can be periodically changed. The information then is (UIDAlice, (lat1, long1),

Bakery). As she walks to the wine shop, the information on the market will be

(UIDAlice, (lat2, long2), Bakery, Wine Shop), as the wine shop also passes the blacklist

test. Ad-networks can pay to access Alice based on these two locations released

(described in Sec. 5.4). The payment will be credited to Alice, with a small fraction

taken by the third party. The third party then fixes a network address to reach Alice
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at the wine shop, that is conveyed to the ad-networks. Alice can receive a targeted

ad (via an app or via SMS) for a particular wine selection.

As soon as Alice moves out of the wine shop, her network address changes and

her location again is not known to anyone but the trusted third party. When she is

close to the Libertarian party headquarters, the check against the blacklist returns a

positive result, and this location is not revealed to anyone.

Mapping Locations to Keywords

Using a mapping of locations to keywords has a variety of challenges and advantages,

which we now discuss. Locations may be defined in two ways which are both com-

patible with our system. It may denote a point of interest where users “check in” (as

in services like Foursquare) or alternatively it may represent a certain geographical

area (defined using lat-longs or the coverage of a given cell tower).

Creating a mapping of locations to keywords is not necessarily easy per se, but

one can reuse online services already providing such a mapping, such as Yelp, Google

Places, and Foursquare. A “folksonomy” approach could also be used where users

augment the map over time, and even receive incentive. In this case, to encourage

tagging of privacy-sensitive locations, the system can allow anonymous tagging. Us-

ability is also a challenge, and care must be taken to keep the number of keywords

manageable and design the blacklist’s user interface to be easy to use (see our UI in

Sec. 5.5).

Multiple benefits to the user come from mapping locations to keywords. If

a user is visiting a place they are unfamiliar with, they may not be accustomed to

what areas are privacy sensitive. Because keyword mappings work in any location, a

user’s privacy is protected even in unfamiliar areas. Additionally, a user may simply

not realize the privacy sensitive nature of a location they are in. Because all traffic

is directed through our system, if a user starts using a location-based service at a
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location they don’t realize is privacy sensitive, our system can catch it and warn the

user before they complete the action.

This mapping allow advertisers to make sense of locations, as today’s

ad-networks already offer keywords to use for context (see Appendix B). Rather than

having advertisers need to bid specifically for each location, ad-networks can simply

run auctions for ad impressions in locations associated with specific keywords.

Finally, mapping locations to keywords helps our system evaluation.

Ad-networks constantly run many auctions of impressions to a customer searching

for a specific term. Cost-per-click (CPC) data from ad-networks hence reflects the

overall advertising demand on this topic. We show how CPC data may be collected

and used to understand the economic value of locations.

Summary of Advantages

Now that we’ve described the system, we discuss the benefits of the system for various

parties.

Users obtain monetary payment for their data and privacy through choice. The

architecture operates in the network and hence, users do not need to make changes

to their devices. If information is leaked or shared between colluding ad-networks,

these parties would have to gain access to the user to monetize this information – and

unless these parties have paid, they are prevented from gaining access to the user.

Hence, we protect against adversaries aiming to extract economic gain. Regarding

adversaries who can infer the identity of the user or learn about locations on the

blacklist, we deal with this form of attack in Sec. 5.3.

Ad-networks and aggregators can obtain non obfuscated data in a legal way,

minimizing data breaches. As the data is ‘bought’, the ad-networks can micro-target.

Application developers do not need to alter their code as we operate directly

in the network. Applications serve as a conduit to show ads to the users, much as
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Data set # Users # Checkins # Locations Duration

Foursquare 40,578 1,377,181 460,663 March-Aug 2011
CDR ∼ 2 mil ∼ 800 mil ∼ 7000 3 months 2009-10

they do today.

Data-Driven Approach

To evaluate potential attacks as well as investigate economic properties of our solu-

tion, we used several large data sets. We gathered (i) mobility patterns of a pop-

ulations, (ii) geo-data to associate a location with a particular keyword, and (iii)

estimates of the commercial value of advertising targeted at each keyword. To the

best of our knowledge, no prior work ever combined them. These data sets included:

Location data from call description record (CDR) data for two major

western European cities (referred to as city A and city B), obtained from a large

European mobile provider, for a period of three months during late 2009, early 2010.

A CDR is a record that is collected by mobile providers whenever a call is made by a

subscriber/user. Each record contains a user identifier, time of call, and an id of the

cell tower that handled the call. The data contains over 800 million different calls

placed by over 2 million users at several thousand cell towers. We focus on major

cities with high density, so most cell tower ranges are small (about 100m).

Location data from Foursquare, obtained by crawling publicly available tweets

of checkins, collected between Mar-Aug, 2011. In total, our dataset had 40,578 users,

460,663 locations, and over 1.3 million checkins. Foursquare is a location based

service where users “check-in” at locations. Foursquare data compliments the CDR

data well, as it gives us exact, semantic knowledge of a location as opposed to GPS

coordinates that could mean a number of locations (e.g. Columbia University vs.

(40.8092652, -73.9612935)). Each Foursquare location is marked with a category,

which we assigned to be that location’s keyword.
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Associations of locations to keywords for the several thousand cell towers in

our CDR data, obtained through the Yelp API. Yelp.com is an online ratings and

review company. One of Yelp’s API calls provides information on all the businesses

within a certain radius of a lat-long point. To decide what radius to use, we first

partitioned the cities with a Voronoi tessellation seeded at cell towers, as is often

done to associate areas with cell towers [12]. To approximate the tessellation with

a circle, we identified neighboring towers with the Delaunay triangulation, and set

our querying radius to be half of the farthest neighbor. We used the categories of

the businesses returned by a Yelp API call to be the keywords of that region. This

approach yielded 447 distinct keywords. Note that in contrast to the Foursquare data

set, each location could have several different, potentially unrelated keywords. For

example, a bakery and a bar could both be associated with one location. We note

here that we could have used a service different from Yelp; our method is general.

Yelp provides convenient APIs and had good coverage.

Keyword monetary values by using the keyword’s cost per click (CPC)4 to

map keywords to monetary value. We gathered an estimated CPC for each of our

keywords through Google’s contextual targeting tool (adwords.google.com).

4We could not directly get a location’s value from an ad-network. To the best of our knowledge,
major ad-networks do not yet allow bidding for real-time locations
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5.3 Mitigating Attacks

Having introduced the design of the system, we now turn our focus to one of our key

goals: protecting the privacy and value of system participants. Attacks may come

from a few different directions– advertisers trying to gain access to or information

about users without paying, malicious attackers trying to undermine the privacy of

users, or users trying to unfairly obtain money from advertisers.

Attacks on the Value of User Data

There are a variety of ways ad-networks may try to take advantage of information

from the system without properly compensating the user. Our system prevents an

adversary economically benefiting by doing so.

First and foremost, ad-networks may try to build up interest profiles of users over

time in order to better target ads later without compensating the user. Even if a

user’s anonymous ID is changed regularly, human mobility patterns are periodic and

somewhat predictable, making it easy to link one currently used anonymous ID to an

older one5. Our system indeed does not prevent such profiling, and it even makes it

easier as the market announces which data is for sale. However, we ensure that this

strategy has no economic benefit, for the following reason: all traffic flows go through

a proxy, and an ad network who did not pay is not receiving the identity and the

location of the user, but a random temporary ID. Then the ad-network, although it

has a rich profile of user u, is not able to recognize user u as the recipient of an ad. For

the same reason, ad-networks do not gain by colluding or reselling the information.

Unless a payment is made, the identity of u and its location is unknown, and the

profile alone does not suffice to target.

A related issue is trajectory-based profiling. If an ad-network learns the habits of

5Note this profiling works on non-blacklisted locations only.
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a particular user over time, the ad-network can show ads based on where a user is

likely to be rather than paying for an exact location. Again, ad-networks must always

pay to be able to access a user’s identity. Care must be taken, however, to make

sure that a user does not unwittingly display information about a visited blacklisted

location based on her trajectory: e.g., location B is sensitive and locations A and C

are not, and the only way to get to C from A is via B). If Alice checks in at point A

and then at point C, ad-networks may infer that she visited B. Such attacks are not

likely, and can be dealt with by ensuring that after visiting a blacklisted location a

minimum amount of time has passed before disclosing a location.

One concern is if an application works to circumvent the proxies and leak in-

formation about either the location or the identity of the user. Against location

leakage, one solution is to substitute a fake location to the application if it does not

disrupt service [46]. An adversarial app could monitor the location market and try

to associate an anonymous user profile with a particular device. Combined with a

profiling attack, it can then send targeted advertisements without compensation by

recognizing this device from now on. This is a costly attack and can be prevented

if OSes separate their advertising services from applications [64], or if the users does

not need a permanent ID for this application. Note also that, since UIDs are changed

periodically, the profile cannot be updated without paying, hence it loses some value

over time.

Attacks on User Privacy

We study the robustness of our solution against a form of attack based on inference.

We consider a malicious adversary whose goal is to predict the visits to blacklisted

locations of a specific user with some accuracy. This may seem a priori impossible

since whenever a user visits a blacklisted location, no information about this visit is

sent or shared anywhere.
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However, because mobility patterns tend to be periodic and similar people may

have similar mobility patterns, an adversary may be able to discover something about

a specific user’s blacklist by comparing their publicly available location information

with the full (including blacklisted) location information of ‘compromised users’.

This auxiliary location information could be obtained via hacking or a malicious

or buggy application. Inspired by de-anonymization techniques based on auxiliary

information [88], we now pose the following question: “Can an adversary with the

full knowledge of the location information of a significant fraction of users predict

with the blacklisted locations of other users with high accuracy?” We test this on

our Foursquare dataset, described in Sec. 5.2. Intuitively, the sparsity of locations

and checkins in this dataset allows for strong attacks of this kind.

As in the de-anonymization technique, we consider a similarity score Sim(u, v)

between two users based on common visits. Let Lu denotes the places that are

visited at least 1 time by u. We define similarity as:

Sim(u, v) =
∑
l∈L

1

span(l)
Il∈Lu∩Lv , for span(l) =

∑
u∈U

I{l∈Lu} .

Note that by doing so we weight more the co-occurrence of a rare location as a sign

of similarity between two nodes.

The attack then proceeds as follows. For a given keyword k, the attacker looks

at all accounts that visited a location tagged with k. For simplicity we will say that

such a user visits keyword k. These are the probes used to find similar users who

are more likely to behave like them. For a given user u, the adversary first locates

the n = 10 closest users that are compromised in terms of similarity v1, · · · , vn. The

attacker then computes the following weighted sum:

P (u) =
1∑n

i=1 Sim(u, vi)

n∑
i=1

Sim(u, vi)I{v visits keyword k}.

It then decide to predict that u visits locations associated with keyword k if and only

if P (u) ≥ θ where θ ∈ [0; 1] is a parameter that allows a trade off between accuracy
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Figure 5.2: Precision-Recall curves for four sensitive keywords: (a) Church (b) Gay
Bar (c) Strip Club (d) Hospital

and aggressiveness of the reconstruction technique.

We empirically study the effectiveness of this attack using 1.3 million checkins

from 40,578 Foursquare users (see Sec. 5.2), in a severe case where the adversary has

compromised 20% of all accounts. We vary the value of θ from 0 to 1 and plot the

precision-recall of this attack for various keywords in Fig. 5.2. As one can see, this

attack is rarely effective, even in such extreme case where many user accounts have

been compromised. The area under the curve is almost always very small. This turns

out to be true even for locations that are sparse, as it is much more difficult to guess

right when only a handful of users are visiting a rare location.

This points to an interesting difference between inference in our scheme and de-

anonymization attacks. While de-anonymization attacks always benefit from sparsity

since the data are present in a sanitized form, in our context, the attack does not

always benefit from sparsity. This is because a minimum critical mass of typical be-

havior is needed in order to run inference. This shows that a proper choice of blacklist

could potentially protect many locations, even as several accounts are compromised

in the system.
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A few locations, at a cell level, have been shown to provide poor anonymity [85].

An interesting open question is if keywords provide better k-anonymity.

Attacks on Advertiser Revenue

We now consider if advertisers can unfairly lose money to unscrupulous users of the

system. Because users are paid when they are accessed by advertisers, they have

an incentive to view or click on many ads, even when they are not interested in the

displayed products, or to artificially boost their profile’s value to derive more money

from each click. We label these types of activities “location fraud.”

Location fraud is actually just a special case of invalid traffic in online adver-

tising. According to Google’s Ad Traffic Quality Resource Center, “invalid traffic

includes both clicks and impressions ... [that are] not the result of genuine user inter-

est. This covers intentionally fraudulent traffic as well as accidental clicks and other

mechanically generated traffic.”6 This definition applies equally well to any clicks or

impressions a user creates in order to game the system. A request for an ad within

our system is just like a request for an ad in the current ad ecosystem, but with some

privacy-protecting filtering and potential additional location information. Thus, pre-

vious techniques used to identify invalid traffic can be used to identify location fraud.

Recently, there has been a variety of research on this subject. Dave et al propose

innovative methods to fingerprint click spam [23]. Haddadi suggests uses “bluff ads”,

ads designed to not appeal to humans and thus only be clicked by bots, to defeat

click fraud [43]. Some information on the structure of Google’s click fraud detection

system is also available [29], [116]. Beyond the academic literature, multiple startups

exist that work to estimate the rates of click fraud. These include Adometry, Visual

IQ, and ClearSaleing (www.adometry.com, www.visualiq.com, www.clearsaleing.com

).

6www.google.com/ads/adtrafficquality/index.html
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Additionally, it is easier to detect location fraud than it is to create invalid traffic

because location information is more constrained than web-browsing. Users are phys-

ically constrained in how far they can travel in a certain period of time. Furthermore,

human beings typically display periodic mobility patterns, returning to their homes

at night and spending week days at work locations. A more extreme use of physical

constraints would be to use location tags; fingerprints extracted from ambient signals

at a specific location at a specific time [89]. These and other constraints can be used

to filter out automated attacks on a system. For example, if a user appears to be

traveling faster than is physically possible, we can remove them from the system for

a period of time or make sure the user exists through the use of a Captcha or phone

call. Because of the physical constraints of location information, and because most

techniques to stop click fraud can easily be applied to our system, we believe that our

system is no more vulnerable to gaming than current online advertising. Although

click fraud is considered an open problem by the research community, the ongoing

viability of online advertising shows that our solution should likewise not be derailed

by invalid traffic.

Beyond digitally generated location fraud, users might “physically” attack the

system by simply going to a high value location in order to appear more valuable to an

advertiser than they actually are. Although this is a concern, we do not believe it to be

a major issue for a variety of reasons. Traveling to a location takes significant time and

effort. Such time and effort has an opportunity cost. In order to make such an attack

worthwhile, the user would have to have a very valuable profile. We don’t anticipate

profiles having such a high value unless the user has made multiple purchases in the

past, in which case the advertiser would be compensated appropriately. Finally, the

market should help deal with these attacks. We believe that valuable profiles will be

distinguishable from worthless ones. The market should then be able to appropriately

price them. To aide in this distinction, some reputation scheme could be added on
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Figure 5.3: Correlation between popularity and revenue among keywords: each point
represents a keyword k, x-axis represents the number of unique users visiting locations
associated with k, y-axis represents: (a) k’s CPC, (b) the revenue generated by ads
associated with k, (c) the revenue generated by all ads in all locations tagged with k.
Keywords in the blacklist are represented by red stars.

top of the user’s profile. For example, a user could receive a rating based on how

often they respond to advertising.

Gaming of the system is certainly an issue and an area for future study. How-

ever, we believe that such concerns are no more difficult than the current click fraud

situation facing online advertising. Given that online advertising is a thriving field

in spite of these concerns, we feel that gaming does not pose a disastrous risk to our

system.

5.4 Economic Analysis

The incentive to use our system is not only in mitigating various privacy leakages

and attacks, but also in extracting value for advertisers and users from location

information. More generally, our system aims at operating at a point where privacy

and value are balanced. This is the trade off that we now wish to analyze.

To understand this trade off, we must first estimate the ad revenue. Location

information today is primarily used to improve targeting, and hence the revenue, of

mobile advertising. Our solution is designed to be privacy-aware but also compatible

with this business model. Estimating mobile ad-revenue is a challenge in itself and
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it requires us to leverage our use of keywords in a model of location value grounded

in real data. Note that our goal is not to estimate the absolute value of mobile ad-

vertisement. We present a simple yet rich model that captures how revenue increases

relatively with additional information about users.

This model makes additional assumptions only for our analysis, but the system

we have designed works independently of these. In particular, in our system different

advertisers can have vastly different values for the same location, or at different

times. Our system runs a cost-per-click auction that computes the selling price of

this information (see [106]), where advertisers are incentivized to reveal their true

value. In our model, however, to be closer to the way advertising currently works, we

directly use the value of the winning advertisers for each keyword, as advertised by

Google. This already accounts for bidders with heterogeneous values and the relative

demand for each keyword. This method exploits the fact that Google that has already

run the auction for us to estimate relative revenue.

Modeling Location Value

In a cost-per-click scenario, the expected revenue of a mobile advertising opportunity

(or mobile impression) is given by the bid of the advertiser that wins the auction,

multiplied by the probability that the user clicks on this ad. The key decision made

by an ad-network is which ad(s) to show. Since various factors affect this probability

(user’s interest in the topic, current context) additional information on a mobile im-

pression - such as the user’s previous behavior or current location - can be extremely

valuable. For instance, consider the case where no information about a user is avail-

able (a situation that our model includes): the best decision that an ad-network can

make is to serve a generic ad that targets the population’s common denominator.

However, this choice can be refined if some information helps improve the estimate

of the chance that a user is interested in ads associated with certain keywords [128].
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This permits extra revenue that our model below captures and that we claim is the

effective value of this information.

The revenue of a single ad is modeled according to the principles above. Our

model assumes that two effects will dominate: (i) A long term behavioral factor that

is dependent only on the user. Studies on behavioral targeting showed that users

who explicitly searched for a term in the past are more likely to react even later to

an ad relevant to that term [35, 128]. Similarly, we assume mobile users who spend

time in locations associated with a particular keyword implicitly display an intrinsic

interest in it. In particular we define the exposure of a user u to keyword k as the

fraction of time a user spend in a location relevant to that keyword, where we assume

that the time spent on a location associated with multiple keywords is equally shared

among these, and we denote it by X̃u(k). (ii) A short term contextual factor that

primarily depends on location. Studies on online display advertising indicate that

the quality and relevance of the page where an ad is shown matters strongly for user

perception. Similarly, the ad of the winning bid associated with a keyword k may not

be as effective if the location where it is shown is not relevant to keyword k. Without

loss of generality we assume that an ad out of context is only δk as effective as in

context, where δk is a constant in [0; 1].

Denoting by CPC(k) the value of the winning bid for keyword k, and assuming that

a user u click ratio is dependent on its exposure X̃u(k) linearly (see Appendix B), the

revenue of an ad for keyword k in location l for user u is:

R(u, l, k) =

 CPC(k) · X̃u(k) if location l is relevant to k

CPC(k) · X̃u(k) · δk otherwise.
(5.1)

The value of location information is how much it allows the ad-network to

select k to increase the revenue given above (ideally always picking maxk∈KR(u, l, k)).

We assume that the ad-network already learned (through previous data purchase,

or the market, or additional profiling) the exposure associated with keywords for
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all users. Then its capacity to pick k judiciously depends on the fact that it can

recognize for which user and for which location this ad will be shown in real time.

This is precisely what our system permits. We denote the series of ad impressions by

(u1, l1), . . . , (uM , lM), and we say i ∈ I if the identities of ui and li are disclosed to

the ad-network and i /∈ I otherwise (e.g. ui is anonymous at that location). Then its

total revenue is:

R =
∑
i∈I

max
k∈K

R(ui, li, k) + max
k∈K

∑
i/∈I

R(ui, li, k) . (5.2)

Note the interchange of the sum and max operator. As more information is purchased,

I grows and terms from the right (where k is chosen according to the “common

denominator” of interests) are moved to the left (where k is chosen to maximize each

ads separately).

Large-Scale Location Value Evaluation

After formulating this simple model, we use it to understand the “cost of privacy.”

Concretely, we want to understand what happens to revenue when companies are not

able to use targeted advertisements at sensitive locations. To achieve this, we obtained

large data sets of user location information, labeled each location with keywords, and

estimated the monetary value of each keyword. We labeled the privacy sensitivity of

each keyword according to sociological literature. For different categories of keywords,

we viewed the effect on overall revenue.

The overall revenue distribution is calculated by applying Eq.(5.2) to our data

set. Various values of δk were used without them affecting our results qualitatively;

below we fix δk = 0.1. We analyzed the distribution of revenue across users, locations,

and keywords. Unsurprisingly, a low number of checkins resulted in low revenue. More

interestingly, we found that locations and users with high numbers of checkins did
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not all have high revenue. This suggests some checkins can be kept private without

greatly affecting overall revenue.

The impact of privacy on revenue can now be analyzed as follows. To first

determine what keywords may be privacy sensitive, we used the work of J. Bing, who

came up with a comprehensive classification of words and topics that can be taken

to be privacy sensitive [7]. We found 33 blacklisted keywords in the Foursquare data

set and 35 keywords in the CDR datasets7.

We then studied the relationship between frequency, sensitivity, and value of key-

words. Intuitively, a rare keyword (i.e., one that is present in few locations or is

visited only by a few users) may be more sensitive as it reveals more information.

We wished to see if such keywords could be blacklisted without greatly impacting the

advertising revenue.

As can be seen in Fig.5.3 (a), the CPC of a keyword does not seem to correlate

in any way with its frequency represented on the graph in log-log plot. However,

when we consider the total revenue from ads targeted to this keyword in Fig.5.3 (b),

its frequency is quite positively correlated. Going a step further, when one considers

the total revenue from all ads shown at a location associated with a specific key-

word in Fig.5.3 (c), the correlation seems almost perfect. This result indicates that,

fortunately, the keywords that are the most rare are also ones that generate little

revenue and can be ignored, giving more evidence to a previous finding [106]. Note

also that privacy-sensitive keywords appeared to be evenly distributed across CPC

and revenue.

We next split the blacklist into several smaller blacklists based on categories. For

each category, we calculated revenue per user without those blacklisted keywords. In

other words, all locations that had blacklisted keywords associated with them were

7 Example of blacklisted keywords: cannabis clinics, doctors, general litigation, gay bars, Bud-
dhist temples. Examples of other keywords: home decor, painters, golf.
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Figure 5.4: Effect of blacklisted keywords on revenue, per category. Foursquare (left
bar), CDR (right bar)

not released when we calculated revenue. The drop in revenue when each specific

category was blacklisted is shown in Fig. 5.4. We note that for locations related to

religion and nightlife there was little to no drop in revenue for the Foursquare dataset

(Fig. 5.4 (a)). This essentially means that these locations need not be released and

yet there will be little perceptible drop in advertising revenue. For the CDR dataset

(Fig. 5.4 (b)), we see religion and finance/legal to fall in this category. The ‘combined’

category refers to all categories except ‘alcohol’. The alcohol category includes words

like ‘bar’ and as such is highly conservative. We see that there is a perceptible drop

in revenue when it comes to alcohol, but it is not more than 50% in the worst case.

This points to a compromise position between privacy and advertising revenue.

5.5 Deployment and User Study

Having shown the system’s robustness to several attacks and the high proportion of

value retained when privacy sensitive locations are filtered out, we now present the

specifics of the design. We also discuss an implementation and user study, conducted

primarily to demonstrate the system’s feasibility. The number of participants was

too small for any broad conclusions, but we present results for completeness. IRB
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approval was granted for this study.

Implementation

An implementation consists of several components: Software on the device, in order

to hold a user’s blacklist and report locations; a web server, to report keywords given

a certain lat-long and store users’ non-blacklisted locations; and a blocking module,

to prevent information leakage. Our user study additionally included a web interface

to publicly display all users’ non-blacklisted locations.

We wrote our location monitoring software as an Android application due to

Android’s popularity. The app, available in Google Play8, was designed to give users

a way to edit a blacklist and monitor which locations (and corresponding keywords)

were being recorded. We used Yelp’s 885 categories as our keywords during the study,

meaning users had a large number of potential keywords to blacklist. To make adding

these keywords into a blacklist manageable, all possible keywords were placed in a

nested menu by category. Thus, a user could select and de-select whole categories

of keywords with a single button press, but could also expand categories to select

specific words. We placed categories more likely to be considered sensitive (as defined

in Sec. 5.4) near the top of this list, and alphabetized all potentially less sensitive

categories. The blacklist was stored locally on the phone. At no point did the authors

have access to a study participant’s blacklist. The app passively recorded locations

in the background every thirty minutes. Each half hour, the app would check the

keywords in the current location. If any of these keywords were in the blacklist, no

further action was taken. If none of the keywords were in the blacklist, the location

and keywords would be uploaded to the server.

Our webserver had two main functions: reporting a location’s keywords and

storing a user’s public location information. To map locations to keywords, we used

8Link to app: http://bit.ly/13qOMqC
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Figure 5.5: Blacklist Figure 5.6: Adding screen Figure 5.7: Map

the Yelp API. See Sec. 5.2 for more details on Yelp. Each time a user’s device uploaded

a lat-long to the server, we queried Yelp to find the categories of each business within

50 meters. This is a possible area for improvement; in future work, the radius of

a query could change depending on an estimate of the device’s current accuracy or

on a user’s privacy preferences. Yelp provides a hierarchical list of 885 categories

and subcategories 9. The server also stored all locations uploaded by the app in a

database accessible only by the authors. In a full implementation, this server should

additionally be able to communicate with ad exchanges.

For the purposes of our small scale user study, we did not think a blocking

module was necessary. However, in a full implementation, it would be necessary

to block any third-party advertisers who did not participate in the system. The

connections to ad-networks and aggregators (AdMob, Flurry Analytics etc.) can be

blocked by a proxy in the middle and by spoofing the MAC address. All necessary

proxies already exist: Privoxy comes with advanced filtering capabilities and handles

rewrites of the HTTP headers like the ‘referrer’ header to prevent leakages of any

form, and mitmproxy can handle SSL10. In addition, as the system works with opt-in

9Yelp categories: http://bit.ly/12TyTER

10www.privoxy.org, www.mitmproxy.org
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Figure 5.8: Screenshot of our web interface (the data shown belong to an author, not
a participant).

users, we can have the users upload their SSH certificates to enable the module in

the middle to masquerade as the user. From an application’s perspective, no logic is

broken. Even for location based services like Foursquare or maps, an unintentional

checkin or a search at a private location can be prevented by checking against the

blacklist – an added benefit.

The web interface, viewable at keyword.cs.columbia.edu, displayed all whitelisted

locations, both on a map and listed with location keywords and times. In order to pro-

tect users’ safety, we instructed users to contact us at any point if they were concerned

about a misconfigured app resulting in unintentional location release. Additionally,

any time a data point was recorded, we delayed making it public by 24 hours. Only

users had the ability to see their data points in real-time via a password-secured link.

Deployment

As this deployment was meant for exploratory purposes, we did not connect the sys-

tem to any ad exchanges. We instead simulated the incentives and costs a user might

114

keyword.cs.columbia.edu


experience while using our system. All participants received a small monetary sum for

participating, and in addition were entered into a lottery. Each user was instructed

that releasing more ‘valuable’ information would give them a higher chance of the

lottery. We did not disclose the exact method of valuing information, mimicking the

opaque way in which information would be priced in a real implementation of the sys-

tem. The intention was that this would incentivize users to release more information.

In order to simulate the costs of disclosing information, we publicly displayed a user’s

non-blacklisted locations through a web interface. In a real system, a user would risk

that her information is used improperly or released to those who might use it in a

damaging way. We believed that publicly displaying a user’s information accurately

simulated this risk. To increase the publicity of their information, we instructed users

to post the link on a social media site, such as Facebook or Twitter, and email us a

screenshot.

We deployed our implementation with six users over roughly two weeks. The users

were all living in America but were geographically diverse, including cities on both

coasts and the Midwest. Study participants were recruited through advertising on

social networks and were primarily adults in their mid-twenties.

Observations

After completing the study, we asked users to complete a brief survey. Our study was

too small to make any general conclusions, but we present results here to inform future

work. Users expressed that they easily understood the keyword system and found

the interface easy to use. The users were divided on how well they felt the system

secured their privacy, with some users concerned that our mapping of keywords to

locations was not precise enough. Our users expressed a range of privacy sensitivities.

Some claimed not to have used the blacklist at all. Others stated that they used the

blacklist to hide sites they associated with social stigma or that they thought would
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send potentially negative signals to employers, insurers or the police.

5.6 Related Work

This chapter is part of a growing body of work that deals with privacy solutions that

aim to reconcile the privacy concerns of users with the economic needs of ‘free’ online

web services and mobile applications [39, 42, 106, 115]. Privad [39] and Adnostic [115]

are browser based systems that enable behavioral targeting while ensuring users’ PII

is not leaked to ad-networks performing the targeting. Our focus in this chapter is

different – we are concerned with location information on mobile devices. Koi [42] is

a system developed to address location privacy by way of location matching – appli-

cations and service providers pre-declare which locations they would be interested in

and the device releases this information at those specified locations. Our solution is

different, in that we have an economic component where application developers need

to pay to access the user at the specified location. In addition, neither the device nor

applications have to be modified to use our solution. The work here is closely related

to transaction privacy [106]. The difference is that we focus on location information

for mobile devices and develop an economic model of location information to drive

our market.

Bacelli et al [3] authors propose models to quantify the economic value of various

locations, with the specific example of proximity advertising in mind. This is similar

to our proposal, in that we too focus on proximity advertising and are interested

in real-time location information. The main difference is that our approach is more

empirically driven and much simpler with fewer assumptions. We rely on keywords

associated with locations (derived from real data) and make no assumptions on how

various businesses are distributed in a geographical region. We focus more on intent,

captured by frequency of visits to a location, to approximate interest in a location
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and the propensity to conduct a commercial transaction at that location. Bacelli et

al rely on a set of interests of a user that are known to the model.

5.7 Conclusion

Given the increasing ubiquity of mobile devices and the flourishing market of services

for such devices, collection and monetization of location information has become a

large concern. The main contribution of this chapter is the design of a solution that

deals with location privacy using economics, and the analysis of this solution using

both large data sets and a small deployment with real users.

Our solution is simple – opt-in users decide which locations they want to reveal

and these revealed locations are sold on an information market. Buyers pay to gain

access to users at specified locations. Locations are specified in keywords, a notion

intuitive to both end users and advertisers. Our solution relies on a privacy protection

component that ensures that location information that the user chooses not to release

will not be leaked, and also minimizes the linkage of the user’s identity with the

released information.

We designed and analyzed the solution using Foursquare checkins, mobility pat-

terns of millions of mobile subscribers from two large cities, business categories from

an online review company, and CPC data from an ad-network. We find that po-

tentially sensitive locations (as defined by sociological research) appear to be well

distributed across locations sorted by popularity and profitability. Likewise, we find

that the potential revenue of these sensitive locations is small compared to the to-

tal value generated from all locations. This suggests a sweet-spot between location

privacy and monetizing location information. We construct and deploy a small scale

version of the system with real users, showing that our solution is indeed feasible.

We observe their behaviors and lay the groundwork for future study.
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Chapter 6

Fair Location-Based Advertising

In previous chapters, we’ve investigated anonymity, privacy, accountability, and trans-

parency. We’ve designed tools to help individuals and shown how bias can exist at a

group level. In this chapter, we set aside the problem of identifying a user and their

private information and investigate the fairness of what happens with that location

data. We examine the limits of fairness at both an individual and group level, pre-

senting an empirical analysis of the impact of fairness on advertising revenue using

a real world example: location based ad personalization for users of Instagram. We

empirically analyze the potential for inadvertent discrimination among gender and

race in location-based systems, additionally showing the impact of location represen-

tation on fairness. Furthermore, we apply fairness techniques to analyze how revenue

is affected when both individual and group fairness guarantees must hold. Though

the work in this chapter is a grounding for research into fairness in location-based

ads, our methodology applies to more general advertising tasks.

6.1 Motivation and Summary of Results

We focus on informing what can practically be done to guarantee fairness when lo-

cation data is used in targeted advertising. We choose this application for multiple

reasons: It is increasingly common as location-based personalization reaches a large

part of the population and it is hard to evade. As we empirically demonstrate, mobil-

ity data has great benefits but raises many concerns in the way it is currently used.
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Perhaps more importantly, we show that many of the hardest challenges previously

addressed in theoretical terms can be quantified in this scenario. For instance, this

brings us to revisit questions like “What constitutes a practical definition of fair-

ness?”, “What should we know or trust about those exploiting the data?”, “What is

the gain we lose when some definition of fairness must be enforced?”

To start, we’ll describe a motivating example where disparate outcomes in tar-

geted advertising is undesirable. For instance, consider a website advertising hiring

opportunities to users; its goal is to optimize for relevance as long as disparate out-

comes among genders and races are avoided. Why would such a system pose new

challenges? First, previously proposed solutions focus on reconciling learning and

fairness for specific tasks for a single party [134, 131, 19, 9]. For instance, how to

increase loan repayment while satisfying equality of treatment or opportunity. In

contrast, data providers interact with myriad third parties each leveraging data for

different learning tasks. Second, as is commonly the case for online data providers,

data about individuals are sparse and naturally represented in high dimensions. This

contrasts with solutions designed to learn from a few structured features available

for all users, such as exam scores. Additionally, leveraging data at large scale in-

variably means that computational complexity becomes a severe constraint, so each

optimization to reconcile fairness with accuracy will rely on efficient approximation.

These challenges, however, do not imply that no solutions can be found to deploy

fair targeting. The direction we examine here is to transform location data before

they are used to train and target individuals. If the transformation and targeting

satisfies some conditions (see background below), then fairness can be guaranteed for

any task. As we demonstrate, much of the gains from targeting is preserved. For

concreteness and simplicity, we focus in this short article on the simplest transform

where details of mobile data are remove by grouping records into larger location cells.
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6.2 Background

In our work, we use the definitions of “Fairness Through Awareness” [27], distinguish-

ing between fairness at an individual level and at a group level, which we describe in

detail below.

Individual fairness. The main principle is that similar people should see similar

outcomes. More rigorously, we consider a classification setting where individuals

(denoted by the set V ) are mapped to probability distributions over outcomes A. For

simplicity, throughout this work we will say each outcome is the decision of whether

to show either a generic or targeted ad, and denote these outcomes as A = {0, 1}

with A = 1 corresponding to the decision to show a targeted ad and A = 0 a

generic ad instead. The space of probability distributions defined on A is ∆(A).

From our point of view, a machine learning algorithm using data from the mobile ad-

network defines a mapping M : V → ∆(A). A difference score between individuals is

denoted by d : V ×V → [0; 1] and a difference score between probability distributions

is D. Throughout this chapter, without loss of generality, as a choice to measure

the distance between probabilistic outcomes we will use DTV , the distance of total

variation (equivalent to one half the L1 norm) though others can be used. It is defined

as: DTV (P,Q) = 1
2

∑
a∈A |P (a)−Q(a)|.

Given these definitions, an algorithm is individually fair if for all individuals x

and y, we have

DTV (M(x),M(y)) ≤ d(x, y) (6.1)

Intuitively, this says that an advertising system must show similar sets of ads to

similar users, and mathematically, this means that that an algorithm mapping users

to distributions over outcomes must be Lipschitz continuous.

[27] shows that it is possible in polynomial time to find a mapping M that is both

individually fair and maximizes a linear objective function (such as expected revenue)
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Number Number Labeled Labeled
Dataset Users Checkins Gender Race

New York 22,300 707,265 10,388 902

Los Angeles 20,724 776,065 9,748 851

Table 6.1: Overview of dataset used in study.

using a linear program.

Group fairness. In contrast to individual fairness, [27] defines two groups of

users S and T as having statistical parity up to bias ε when:

DTV (ES[M ], ET [M ]) ≤ ε (6.2)

where ES and ES denotes the expectation of ads seen by an individual chosen uni-

formly among S and T . This definition implies that the difference in probability

between two groups of seeing a particular ad will be bounded by ε. Note that in-

dividual fairness does not imply group fairness, and vice versa. A natural question

is: “When can both individual fairness and statistical parity be achieved simultane-

ously”? To guide the design of a mobile platform one can use the following result

introducing dEM(S, T ), the Earth Mover’s Distance [96] between S and T .

6.3 Data Description

To understand the important trade offs facing advertising platforms, we collected

a behavioral dataset linked to race and gender information, allowing us to study

individual and group fairness and its impact on the predictive power of location

data. We obtained publicly available data from Instagram, a popular image sharing

social network and a valuable information source for several reasons. Instagram

data includes behavioral data such as activity descriptions and locations – pieces

of information linked to actions in the real world through the use of photos and

smartphone GPS sensors. Additionally, photographs provide lots of user information,
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and the productization of computational vision techniques has made it possible to

extract this information at scale.

Methodology

We gathered metadata (such as time of photo, URL of image, tags, location, etc.) for

all photographs of a ”root” user, Kevin Systrom, the founder of Instagram. We then

randomly sampled user profiles from those who had commented or liked his photos

and gathered their metadata. We repeated this process, randomly sampling user IDs

of those commenting or liking photos of any crawled profiles, obtaining the metadata

of 115,796,284 for 260,389 different profiles. Systrom is a popular Instagram presence

(7.9 million followers) and a wide variety of users comment on his photos, seemingly

to communicate with the platform, making him a good starting point for a random

crawl. No images were downloaded from Instagram.

Location. Of our 115 million photo information dataset, 16,537,404 were geo-

tagged for 162,549 users. In order to study advertising that micro-targets small

granularity locations, we narrowed our focus to two major United States cities, New

York City and Los Angeles, a typical practice. Using only photos located in the

bounding boxes of those two cities, we created two subsets: New York had 22,300

users with 707,265 photos and Los Angeles had 20,724 users with 776,065 photos.

Tags. Like other social networks, Instagram users label their content with “hash-

tags”, which label topics for the photo, make photos more easily searchable, or let

the user express him- or herself. As we discuss in a later section, we use these tags

later as part of our location-based advertising model.

Labeling

Next we discuss labeling our users with demographic information and evaluating that

labeling.
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Labeling Gender. To label our the gender of the users in our dataset, we

applied the methodology of Mislove et al. [79]. We obtained the number of babies

born by name, gender, and year of birth in the United States via Social Security

data1, assigning a gender to users with a first name for which there were both at

least 50 births and 95% of recorded births were one gender. Out of our entire dataset

of 260,389 users, this labeled 92,935 profiles (35%). In our New York City subset,

10,388 were labeled with gender, 5,471 female and 4,917 male. In Los Angeles, 9,748

users labeled with gender: 4,965 female and 4,783 male.

Race labeling. We labeled the race of profiles based on face recognition software,

similar to prior work [90]. The Face++ API (www.faceplusplus.com) recognizes

faces in images, additionally providing demographic information, labeling the race of

users from one among Asian, Black, and Caucasian. Although we did not download

any photos, our metadata included publicly accessible URLs of images, which we could

pass to the Face++ API. We ran this software on the first 500 photographs of a subset

of our New York and Los Angeles users, labeling a profile with the race that appeared

most frequently in their photographs, using a binary labeling of Caucasian or minority.

This labeled 902 users in our New York dataset; 746 labeled Caucasian and 156 from

minorities, and 851 users in Los Angeles; 710 Caucasian and 141 minority.

Evaluation with manual labeling. To provide ground truth validation of our

more scaled labeling techniques, two research assistants labeled a randomly selected

subset of 200 profiles for gender and race. After filtering for private, deleted, or

business profiles, 194 profiles remained. For gender, the labelers selected from male,

female, or other. In practice, only the male or female categories ended up being used.

For race, a subset of the United States Census categories were used: White, Black,

Hispanic, Asian, and other.

Of our 194 human-labeled profiles, 86 users had first names recognized by our

1Available at https://www.ssa.gov/oact/babynames/limits.html
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methodology. Of these, 84 out of 86 (97%) agreed, giving us high confidence in the

precision of our gender labeling approach.

Comparing our race labeling methodology with the 194 human-labeled profiles and

a binary Caucasian/Minority labeling, we found the image technique agreed with our

human labelers 89.7% of the time, a lower level of accuracy than our gender labeling

but still relatively high. This is in line with other works that report that Face++ has

high levels of accuracy for race labeling.

6.4 Mobile Advertising Model

In order to analyze the trade off between fairness and revenue, we model a location-

based advertising system using our dataset. We focus on this domain due to its

importance (38% of all smartphone advertising used location targeting in 2016), and

its potential for discrimination as location is highly sensitive and often correlates with

sensitive traits such as race or income [104]. We simulate a system with the following

problem: Given a user’s locations from previous check-ins, predict what topics a user

will be interested in. Such a prediction could allow a service to better target ads.

User and Location Representation

We represent individuals in terms of their visits to different locations. We map

locations to an index j. Each user is represented as an array, with index j set to 1

if the user has checked in at location j and a 0 otherwise. In our original dataset,

locations for each photo are latitude-longitude pairs, and here we discretize these by

truncating these coordinates to a certain level of prevision. In different analyses we

vary this precision to study how fairness and revenue is impacted by granularity of

location representation. Using fewer digits implies a lower granularity, which is better

for privacy but less specific and hence likely less useful for advertisers. We vary the cell
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City Race Count Fashion Interest Health Interest Travel Interest

NY minority 156 0.385 ± 0.039 0.141 ± 0.028 0.378 ± 0.039

NY white 746 0.413 ± 0.018 0.155 ± 0.013 0.513 ± 0.018

LA minority 141 0.298 ± 0.039 0.113 ± 0.027 0.355 ± 0.040

LA white 710 0.332 ± 0.018 0.151 ± 0.013 0.420 ± 0.019

Table 6.2: Breakdown of tag interest by city and race. The percent of users who
posted about the topic is shown with standard error of the mean.

sizes from 0 decimal places (e.g., (-74., 40.) is a cell; cells have sides of length roughly

111km) to 4 places (e.g. (-73.9989, 40.7245) is a cell; cells have sides of roughly

10m). We additionally conducted our analysis representing users with a histogram

of frequencies of visits to each location as opposed to binary representations, but the

results were similar and we omit them due to space.

Interest Prediction

After defining how users are represented, we use these feature to predict if a user is

interested in several topics, utilizing Instagram’s hashtags for ground truth. Hash-

tags, used on several platforms such as Instagram and Twitter, are ways for users to

associate topics with their post. Examples include a user tagging a picture of food

with “#food” or of himself with “#selfie”. We use three different tags: #fashion,

#travel, and #health.

We trained a model predicting a user’s likelihood to post each of the three tags

using a user’s location visits as features and whether or not they had used a tag

as labels. To avoid overfitting we regularized each model using ridge regression (i.e.

L2 penalty) and conducting three way cross validation, picking the parameter that

maximized peformance on the training set. All training was conducted using the

scikit-learn python package.
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Figure 6.1: Granularity vs. Precision at 0.2 recall
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Figure 6.2: Granularity vs. AUC

Performance and Revenue Estimation

We evaluate our models in two ways: in traditional machine learning terms and for

their ability to improve revenue in an advertising simulation. We use AUC as a metric

to understand our classifier performance due to its standard acceptance and our class

distributions being highly skewed. For all three tags and both cities, AUC is 0.5

at the broadest granularity, meaning our model is no better than random guessing.

However, as the number of digits increases, so does AUC. In NYC, our classifiers have

AUCs of 0.82, 0.92, and 0.65 for fashion, health, and travel, respectively, and in LA,

we report AUCS of 0.83, 0.92, and 0.68.

Moving beyond classifier performance, we estimated the impact of granularity
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Figure 6.3: Revenue as a function of granularity, by city and tag.

on revenue. Earlier, we distinguished between generic and targeted advertisements.

Based on estimates generated from the Facebook ad tool2, we said that the cost per

click (advertiser revenue) for a targeted ad was $2 and the revenue for a generic ad

was $1. In our model, a generic ad always generates revenue, and a targeted ad only

generates revenue if the user is indeed interested in a topic, and so the system will

only show a targeted ad to a user if the expected revenue justifies the risk of receiving

no revenue.

Figure 6.3 displays the impact of granularity upon revenue. The x axis is latitude-

longitude digits and the y axis is revenue Point shape (and color) correspond to tags

and each panel is a separate city. In New York, a predictor using the finest granularity

of 4 digits generated $1021, $906, and $994 in revenue for fashion, health, and travel,

respecitvely, over a baseline of displaying generic dislay $902. The optimal revenue if

each interested user saw a targeted advertisement would be $1270, $1040, and $1344,

meaning we achieved 71.0%, 86.7%, and 67.1%. The results were similar for LA with

slight improvements on percent of optimal revenue.

2https://www.facebook.com/business
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6.5 Evaluation

Balancing Fairness and Revenue

We now consider revenue maximization under the constraint of individual fairness.

In Section 6.2 we referenced how this could be achieved after the choice of a distance

function between outcomes, a distance function between users, and a linear objective

function. Our choice of D, the distance between distributions of ads, is DTV (P,Q) =

1
2

∑
a∈A |P (a)−Q(a)|. For our choice of d, the distance score between users, we again

use the distance of total variation, this time upon the histogram of visits to locations

between each pair of users using the representation of users defined in Section 6.4.

Our objective function is to maximize expected revenue, as defined as
∑

x∈V g ·µx(0)+

t · µx(1) with g, the revenue of a generic ad, set to 1 and t, the revenue of a targeted

ad set, to 2. After these choices, the linear program chooses a probability of showing

a targeted ad to a user to maximize revenue under the constraints of similar users

seeing similar ads.

In order to make the trade-off between revenue and fairness more fluid, we differ

from prior work and introduce a new parameter k into Equation 6.1:

DTV (M(x),M(y)) ≤ k · d(x, y) (6.3)

A large k means more flexibility in ad assignment but less individual fairness; k =∞

means identical users can see completely different ads. In contrast, a low value of k

constrains the problem more, with k = 0 meaning all users must have the same ad

distribution.

We run this linear program for both cities at all granularity levels and for multiple

choices of k. We then compute a real revenue with the function
∑

x∈V g · µx(0) + t ·

µx(1) · 1x∈I with the set I denoting users who actually posted the target tag. Due

to the number of constraints growing quadratically with the number of users, Here
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we are only able to present results for fairness by race and leave detailed analysis of

gender for later work.
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Figure 6.4: The impact of k and granularity impact on revenue.

Figure 6.4 displays the impact of k and granularity on revenue for both cities with

the tag fashion. The x axis corresponds to the choice of k used in the linear program.

The y axis represents the actual revenue of the ad assignments output by the LP.

Color denotes the granularity of location. The graph demonstrates again how finer

granularity can increase revenue. In both NYC and LA, at nearly all values of k, a

higher granularity corresponds to higher revenue. Another important takeaway is the

shape of the lines. The revenue at k = 2 is nearly identical to the revenue at all higher

amounts of k. The revenue declines rapidly at k = 0, where all individuals have the

same distribution, and k = 0.5. The increase in revenue from k = 1 to higher values

of k is significant but not a large portion of the highest optimal revenue, suggesting

a good potential value due to its balance and simplicity.

We next examine the impact of k and granularity upon fairness. In Figure 6.4, the

x axis again corresponds to value of k. Color corresponds to race, with blue associated

with caucasians and red associated with minorities. The y axis now corresponds to

the average probability that users of the class saw a targeted ad, with error bars

corresponding to standard error of the mean. Each facet represents a different level

of granularity.
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Figure 6.5: The impact of k and granularity on fairness.

At lower levels of granularity, all users have similar low-resolution representations

and thus it is difficult for our click predictor and then LP to risk displaying targeted

ads, instead showing generic ads at all values of k. At medium level granularities,

we see the algorithm begin to assign the ad to a small number of users and addi-

tionally the lines for each class to diverge, signally a rising level of group unfairness.

Interestingly, in both graphs, the lines converge to be near identical at finer levels of

granularity, at 4 digits for NYC and 3 and 3.5 digits for LA. This could be caused

by mid-range granularities being associated more with neighborhoods, whereas very

fine granularities will correspond to more exact venues, removing rougher associations

of neighborhoods around areas with certain tags and narrowing them down to more

specific places (e.g. 2 lat-long digits corresponds to roughly 1km, 4 to 10m).

Bounding Fairness

For two demographic attributes, race and gender, we compute the Earth Mover’s

Distance, using the pyemd package [97, 96]. More precisely, for race we calculate the

EMD between two probability distributions, one over Caucasian users and the other

over Non-Caucasian users, with the “distance” between users defined as the distance

of total variation of the histogram of their location visits. Similarly, for gender we
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calculate the EMD between the distribution of female and male users. As mentioned

in Section 6.2 we represented locations as “cells”, assigning a photograph to a cell

by truncating the latitude-longitude coordinates by a varying amount.

The large number of users labeled with gender presented a difficulty for our EMD

calculation as Earth Mover’s Distance does not scale well. We use agglomerative

clustering [123] to approximate EMD. We found this technique that groups individuals

into “points” is well suited to our problem due to nonuniform cluster sizes.

We add a mechanism to cope with statistical parity, as it may create a spurious

statistical bias between finite size groups, even when the expectations among those

groups are equal. In addition to computing EMD between demographic groups, we

also computed EMD between randomly created groups with the same size as our

demographic groups.

In Fig. 6.6 we show the result of this process. The x-axis shows the granularity

in terms of latitude longitude decimal places. The y axis shows the EMD. Lines

are colored according to demographic, and a dashed line indicates random grouping

of users as opposed to grouping by demographics. To put the EMD numbers into

perspective, on the lower end, an EMD of 0.05 means one group may be seeing a

targeted ad 5% more often. At the higher end of 0.8, users across the two groups are

seeing quite different sets of ads.
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In New York for race, the random line is clearly below the regular line, providing

some evidence of real differences between the demographic groups as opposed to

an artifact of sparsity. The line for gender is additionally more separate than it’s

counter-part in Los Angeles. This is possibly due to the much higher density in New

York. As all users begin to have high difference scores from one another, caused

by having no overlapping locations due to low density, all label assignments will be

indistinguishable from each other. Gender overall seems to show a weaker separation

between the real EMD and the random EMD.

The EMD increases as the data becomes more precise. One limitation of this

study is that the distance d we chose does not distinguish two users who have nearby

but non-intersecting visits and users who are on the opposite side of the city. Different

choices of d with true geographical distance may refine those results.

6.6 Conclusion

In this chapter, we showed the impact of granularity on ad targeting, demonstrated

the impact of fairness algorithms on a real world behavioral dataset, and explored

a utility-fairness trade-off. There are many possible future directions. All results

should be reproduced on larger datasets and different classes. One idea is to refor-

mulate the problem in terms of where ads are shown or how users are reached, as

opposed to focusing on the individuals. Building on our results, we also hope to cre-

ate scalable algorithms for debiasing representations of users that work with sparse,

large behavioral datasets.
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Conclusion

In this thesis, we have demonstrated both new problems and solutions in the field of

location data. We have examined issues affecting both groups and individuals, and

have considered solutions at both a local and system level. Throughout, we have

have looked for flexible trade-offs as opposed to hard solutions which are likely to

be opposed by data aggregators. Additionally, we have kept in mind the concepts of

informed consent and user control as well as transparency.

In the first two chapters, we investigated attacks on user privacy. We showed

that with just a few spatiotemporal points, it is possible to link anonymous users

across anonymous datasets. In contrast to prior solutions which relied on heuristic

techniques, our work was grounded in a theoretical model. We used novel datasets

for evaluation that varied in behavior, location, and density. In the second chapter,

we showed that knowledge of an individual’s location data can be used to infer their

race. We examined how mobility data can be used to create new metrics of segrega-

tion between a group and examined the trade off between granularity and classifier

accuracy.

The later three chapters investigated solutions to the privacy-value trade off. Pre-

vious work on user privacy has often either completely blocked off user-level infor-

mation from aggregators or has been of an abstract nature difficult for end-users to

understand. In this portion of the thesis we focused on work that could empower users

by informing them, would allow more choice in while balancing incentives of all system

actors, and analyzed systems that prevented specific, understandable harms caused
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by data aggregation. In Chapter 4 we focused on transparency and accountability by

building a website that helps users understand how their location data might be used

to infer things about them. In Chapter 5 we proposed and analyzed a system whereby

users broadly categorize the locations on which they can be appropriately targeted.

This gave users an easy to understand method of data disclosure while putting loca-

tions in terms readily accessible to aggregators as well. The system was designed in

a way such that users would be incentivized and indeed fairly compensated for their

data. We showed that, assuming some reasonable user behavior, revenues would not

be greatly negatively impacted by such a system. Finally, Chapter 6 combated al-

gorithmic bias by empirically calculating the trade-offs between revenue, individual

fairness, and group fairness. In contrast to previous studies which worked on specific

problems or “dense” data, we explored a highly sparse and proposed a simple solution

for de-biasing.

The work presented here answers some questions but creates many more. In this

work, location is usually represented either as discretized geographic regions or as a

collection of categories. Incorporating a better representation of location that takes

into account both physical proximity as well as the semantics of the location could

yield a greater benefit for location privacy or algorithmic bias research. Several of

the works could benefit from questions of scaling: for example, in chapter 2, we could

expand the work to more cities or countries, and in chapter 4 we could likewise scale

our auditing website to more services.

One challenge that was heavily considered in this work and continues to face pri-

vacy research is this: do individuals care about privacy? People report “yes” when

asked and the rise of encrypted chat applications and less broadcast-centric medi-

ums like Snapchat seem to underline this. However, years of privacy research, data

breaches, and privacy scandals have not impacted the fact that billions of people,

including the author, trade their personal information for free services every day.
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There are several possible explanations for such behavior. Maybe individuals don’t

actually care about privacy, but find it useful to report “yes” on surveys. Perhaps

people do not understand the risks associated with the applications they use. Per-

haps people understand the risks but are happy with the trade off, or perhaps the

apps have become so indispensable as to allow little choice. In this thesis, we have

endeavored to build systems and tools that are more easy for users to understand and

utilize. Continued research, engineering, and communication with the public will be

necessary.
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Figure 6.7: Removing features associated with race makes it difficult to predict race,
but in this case does not greatly impact click prediction performance.

An interesting emerging area of study is finding “fair” representations of

data [133]. What are scalable and interpretable ways to transform data, such that

any subsequent machine learning or data-mining conducted on it will not show bias?

As a follow up to the work in Chapter 6, I was curious about the performance of

advertising classifier when possibly discriminatory features were removed. I used a

simple approach: use a χ2 test for feature selection for a model that classifies race. I

removed any features with a low p value (under 0.1), and completed again the click

prediction analysis of Chapter 6 and measure the performance. Additionally, I pre-

dicted race using the modified dataset. The results are displayed in Figure 6.7. The

prediction results for clicks remain similar to as before, but now race is predicted

135



with much lower performance. More investigation is required.

Data aggregation does not appear to be letting up, and is even growing into new

domains of audio and video recording. Going forward, it will be very important to

research and mitigate the negative impacts of large-scale data aggregation, in location

data and in other forms. Doing so will necessarily be an interdisciplinary effort that

includes many subjects beyond just privacy, such as security, economics, algorithmic

bias, fairness, accountability, and transparency. This emerging field of study includes

journalists who find real world harm, theoreticians defining the boundaries of what

is possible, and dedicated engineers to bridge the gap between the two, bringing us

the benefits of new, powerful insights into human behaviors without the concomitant

concerns.
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Appendices

A Proof of Theorem 1

We first show that each of the 2 factors in the denominator of φ(a1, a2) can be replaced
by the corresponding truncated sum while affecting its value by at most 1 + 1/C2.
Since the numerator is decreased by truncation, this establishes the upper bound on
φ′(a1, a2). We then show that for the numerator of φ(a1, a2), the difference between
the infinite sum and its truncated version is at most 1/C times the first term in this
sum. Since the denominator is decreased by truncation, this establishes the lower
bound on φ′.

To obtain the upper bound, we first consider the factor
∑∞

k=a1
λk

k!

(
k
a1

)
(1− p1)k−a1

in the denominator. Expanding the binomial coefficient and pulling common terms
outside the summation, this factor can be written as:

λa1

a1!

∑
k≥a1

λk−a1(1− p1)k−a1
(k − a1)!

=
λa1

a1!

∑
k≥0

λk(1− p1)k

k!

Note that first term in this revised sum evaluates to 1, the term of index lnC evaluates
to λlnC(1 − p1)lnC/(lnC)! � 1

C2 , and the sum of all terms from lnC onward are at

most λlnC(1−p1)lnC/(lnC)!
(1−λ) (upper bounding the infinite sum with a geometric series).

Since λ < 1/2, we conclude that the sum of all terms from index lnC onward are less
than 1/C2 times the first term.

The truncated sum for the second factor in the denominator can be bounded
identically, giving us the desired upper bound on φ′(a1, a2).

It remains only to establish the lower bound by bounding the truncated numer-
ator. We assume without loss of generality that a1 ≥ a2. Expanding the binomial
coefficients in the definition of the numerator of φ(a1, a2) and pulling common terms
outside the summation, we can rewrite the numerator as:

λa1(1− p2)(a1−a2)

a1! a2!

∑
k≥a1

λk−a1 ((1− p1)(1− p2))k−a1 · k!

(k − a1)!(k − a2)!

The first term inside the revised sum is simply a1!/(a1−a2)! > 1. Let i denote the
final index in the truncated sum, a1+max{lnC, 2a1}. The ith term is upper bounded
by λi−a1 · i!

(i−a1)!(i−a2)! . If a1 ≥ 4, then since i ≥ 3a1, it is easy to see that i!
(i−a1)!2 < 1/2.

If a1 ≤ 4, then since i− a1 ≥ lnC ≥ 7 , we can note that i!
(i−a1)!2 < 1/2. As λ < 1/2

and i > a1 + lnC, the ith term is less than 1/C · 1/2. Again upper bounding the
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infinite sum with a geometric series, the sum of all terms from index i onward is less
than the ith term divided by (1 − λ), and hence < 1/C. Therefore, the sum of all
terms from the ith term onward is less than 1/C times the first term, completing the
proof.

Proof of Lemma 2

Recall that in Lemma 2, we proved that E[Score(u, v, `, t] ≤ 0 for any pair of users
u, v such that v 6= σI(u). For v = σI(u), we showed that the expected score is lower
bounded by:

X(0, 0) ln
X(0, 0)

Y (0, 0)
+ (1−X(0, 0)) ln

(1−X(0, 0))

(1− Y (0, 0))

= X(0, 0) ln
X(0, 0)

Y (0, 0)
− (1−X(0, 0)) ln

(1− Y (0, 0))

(1−X(0, 0))

≥ (1− λ(p1 + p2 − p1p2))λp1p2 −

λ(p1 + p2 − p1p2) ln
(1− e−λ(p1+p2))

(1− e−λ(p1+p2−p1p2))

To prove that this expression is lower bounded by (λp1p2)
2K, it suffices to prove

that:

(1− λ(p1 + p2 − p1p2))λp1p2 −

λ(p1 + p2 − p1p2) ln
(1− e−λ(p1+p2))

1− e−λ(p1+p2−p1p2))
≥ (λp1p2)

2K

or equivalently:

(1− λ(p1 + p2 − p1p2))p1p2 − λ(p1p2)
2K

− (p1 + p2 − p1p2) ln
(1− e−λ(p1+p2))

(1− e−λ(p1+p2−p1p2))
≥ 0 (4)

We can simplify the final factor in this inequality as follows:

ln
(1− e−λ(p1+p2))

(1− e−λ(p1+p2−p1p2))
= ln e−λ(p1p2)

(eλ(p1+p2) − 1)

(eλ(p1+p2−p1p2) − 1)

=

(
ln

(eλ(p1+p2) − 1)

(eλ(p1+p2−p1p2) − 1)

)
− λp1p2

where the first equality came from multiplying the numerator and denominator by
eλ(p1+p2−p1p2).
Substituting into Inequality (4), our lemma reduces to:

(1− λ(p1 + p2 − p1p2))p1p2 − λ(p1p2)
2K

(p1 + p2 − p1p2)
(

ln
(eλ(p1+p2) − 1)

(eλ(p1+p2−p1p2) − 1
)− λp1p2

)
≥ 0
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or, equivalently:

p1p2(1− λ(p1p2)K)−

(p1 + p2 − p1p2) ln
(eλ(p1+p2) − 1)

(eλ(p1+p2−p1p2) − 1)
≥ 0 (5)

This is hard to simplify directly, so we introduce the following upper bound:

λp1p2 = ln
1

e−λp1p2
= ln

eλ(p1+p2)

eλ(p1+p2−p1p2)
≤ ln

eλ(p1+p2) − 1

eλ(p1+p2−p1p2) − 1

Using Z to represent the quantity ln eλ(p1+p2)−1
eλ(p1+p2−p1p2)−1 and substituting the new in-

equality in Inequality (5), we are trying to prove:

p1p2(1− ZK)− (p1 + p2 − p1p2)Z ≥ 0

⇔ p1p2 ≥ (p1 + p2 − p1p2(1−K))Z

⇔ p1p2
p1 + p2 − p1p2(1−K)

≥ Z

⇔ e
p1p2

p1+p2−p1p2(1−K) ≥ eλ(p1+p2) − 1

eλ(p1+p2−p1p2) − 1

Now to conclude the proof we use two inequalities that follows from the Taylor
expansions. In particular we have:

ex ≥ 1 + x+
1

2
x2

and for x ∈ o(1):

ex ≤ 1 + x+ x2
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Now by assuming that λ ∈ o(1) and by fixing K = 1
2
λ(p1 + p2 − p1p2)2 we get:

e
p1p2

p1+p2−p1p2(1−K) ≥ eλ(p1+p2) − 1

eλ(p1+p2−p1p2) − 1

⇔ 1 +
p1p2

p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2

+

p21p
2
2

2(p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2)2

≥

λ(p1 + p2) + λ2(p1 + p2)
2

λ(p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2)

⇔ 1 +
p1p2

p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2

+

p21p
2
2

2(p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2)2

≥

1 +
p1p2 + λ(p1 + p2)

2

p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2

⇔
1
2
p21p

2
2

p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2

≥ λ(p1 + p2)
2

Now by fixing λ < 1
8

p21p
2
2

(p1+p2)2
we get:

1
2
p21p

2
2

p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2

≥ λ(p1 + p2)
2

⇔
1
2
p21p

2
2

p1 + p2 − p1p2 + 1
16
p21p

2
2

≥ 1

8
p21p

2
2

⇔ 1

4
p21p

2
2 ≥

1

8
p21p

2
2

So the claim follows.

B Model of Location Value

Our economic model for location information leverages keywords that can be related
to physical locations. At the same time, much like keywords used by ad-networks,
they characterize the typical demands for impressions on this given topic. The premise
is that a location has high economic value if keywords associated with the location
have corresponding high value, as given by ad-networks and aggregators.

Brief overview of ad networks

Online advertising is the raison d’être of collection of personal information about
mobile users. This complex ecosystem involves three kinds of actors: the advertisers
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who wish to promote their products, the publishers who are in the context of this
paper the app developers creating ad impressions that can be monetized, and the
users who access the apps and services that publishers create. The ad-network is the
entity responsible to orchestrate the interactions among these players, maximizing
the revenue through better matching between products, ad-context, and users.

Keywords are pervasive in online advertising. They are used in sponsored search,
as well as display ads, to interpret the context under which an ad is placed. They
are also used to characterize the behavior of a user (previous search queries [128], or
terms found in browsing history [16]). Advertisers use keywords to decide where to
show their products.

Multiple revenue models exist that share differently the uncertainty associated
with an advertisment. In a cost-per-mille (CPM) model, the publisher and ad-network
receive a constant price for all the ads they show, hence the risk is entirely taken by
the advertisers. Although we do not model this case here, our solution can be applied
to it. In fact information about users is already sold through market of third party
cookies like bluekai.com.

The cost-per-click (CPC) model, which is the one we analyze here, implies
that the ad-network takes most of the risk as it will be paid only when users react
to the impression by clicking on the ad. Advertisers hence continue to bid for clicks
associated with certain keywords, as they do today. We also assume that this keyword
automatically define a set of places that are relevant for this advertisement to be
effective. The advertiser could also specify manually a target set of locations, a
feature we do not model here but that would immediately fit in our solution. An
ad network receives all keyword bids. Its ability to match product and users is the
primary reason why additional information about the user is critical. Contextual
advertising, and Behavioral targeting are two common techniques used to extract
additional revenue when such information is available. The ad-network in this case
needs not only to decide which ad to placed based on which advertisers bids the
highest amount per click, but it also need to estimate the chance that a click occurs
when a specific ad is played. We adopt a simple linear model based on a user exposure
to keywords to model this choice.

More details on online advertising can be found in [130].

Places, Keywords, Mobility

We model the mobility of users using a simple discrete model of visits to a set of
pre-defined locations L that we index using l. A location may denote a point of
interest where users check in, as in location based services like Foursquare. A lo-
cation may alternatively represent a certain geographical area defined either using
longitude/latitude coordinates, or the coverage of a given cell tower. Our model will
be evaluated for both cases later.

A location l implicitly provides information about the users who visit it (i.e., peo-
ple visiting a pet-shop are implicitly expressing an interest in pets). Our model repre-
sents this as follows: we associate a set of keywords to each location, that correspond
to categories or topics of interest that are relevant to this particular location. Note
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that a single location can have multiple keywords and, similarly, that a keyword may
be present in multiple locations, especially a popular one such as “coffee” or “music”.
Keywords in our model are indexed by k ∈ K. The relation between locations and
keywords may be thought of a bipartite graph and we define the association matrix
A as:

Al,k = 1 if k is a keyword for l, 0 otherwise.

The mobility of each user u ∈ U can be modeled as a random jump process Yu(t)
of locations taking value in L. Given that human mobility is periodical, it makes
sense to consider the intensity of visit of a user at a location, denoted by µu(l). This
variable captures the rate per unit of time that this location is visited, or equivalently
the fraction of time spent at it.

Exposure

A user throughout the day visits several locations. Some may visit more frequently
locations in which particular keywords are present. The following variable called
exposure, measures the fraction of time a user spends in a location relevant to this
topic:

Xu(k) =

∑
l∈LAl,kµu(l)∑
l∈L µu(l)

.

A location containing fewer keywords implicitly provides more specific information
about the users who visit it. It is hence important to consider the normalized exposure:

X̃u(k) =

∑
l∈L

1
supp(l)

Al,kµu(l)∑
l∈L µu(l)

, with supp(l) =
∑
k∈K

Al,k

Normalized exposure is likely to be correlated with the intrinsic interest of a user
in this particular topic. We should hence expect users to react more positively to ad
on topics they have been more exposed to.

C Appendix: Blacklists

CDR Blacklist

• Acupuncture
• Adult
• Adult Entertainment
• Buddhist Temples
• Cannabis Clinics
• Casinos
• Chiropractors
• Cosmetic Surgeons
• Counseling & Mental Health
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• Dentists
• Dermatologists
• Doctors
• Endodontists
• Family Practice
• Financial Advising
• Gay Bars
• General Litigation
• Health and Medical
• Home Health Care
• Hookah Bars
• Laser Eye Surgery/Lasik
• Lawyers
• Lingerie
• Maternity Wear
• Medical Spas
• Naturopathic/Holistic
• Obstetricians and Gynecologists
• Ophthalmologists
• Optometrists
• Oral surgeons
• Orthodontists
• Osteopathic physicians
• Pawn shops
• Pediatric dentists
• Police departments
• Religious organizations
• Traditional chinese medicine
• Urgent care
• Weight loss centers

Foursquare Blacklist

• Assisted Living
• Bank
• Campaign Office
• Capitol Building
• Casino
• Cemetery
• Church
• City Hall
• Cosmetics Shop
• Courthouse
• Credit Union
• Dentist’s Office
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• Doctor’s Office
• Drugstore /Pharmacy
• Emergency Room
• Financial or Legal Service
• Fire Station
• Funeral Home
• Gay Bar
• Government Building
• Home (private)
• Hospital
• Lingerie Store
• Medical Center
• Middle School
• Military Base
• Mosque
• Playground
• Police Station
• Racetrack
• Strip Club
• Synagogue
• Tattoo Parlor
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